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Foreword

Vision is our strongest sense. It enables us to quickly perceive and analyze our
surroundings such that we can find our way around, recognize people and places,
and avoid potential dangers. However, this rather functional way of looking at the
human visual sense only grasps a fraction of the rich variety of sensual experiences
that are channeled through optical stimuli. Visual perception is not only a tool for
us but it can also induce great emotions, for instance if we are looking at a painting
we like, or when we are intrigued by the visual effects of a feature film. The field of
computer science that aims at algorithmically modeling these aspects of the human
visual system is called visual computing. The field of visual computing subdivides
in several more specific research areas, and i will briefly look at two of them in the
following.

Researchers in computer vision and artificial intelligence are trying to equip com-
puters and autonomous systems with visual analysis capabilities that match the ones
of real humans. In recent years, this area of research has seen tremendous progress.
Computers can nowadays perform optical recognition tasks, objects or people in im-
age sequences can be tracked, and optical scene analysis can provide control inputs
to steer autonomous vehicles. However, if we compare the performance, robustness
and application range of even the best computer vision system today to the abilities
of the human visual system, we have to humbly conclude that the field of computer
vision is still in its infancy.

While computer vision focuses on the functional or reconstruction side of visual
computing, computer graphics focuses on the synthesis or display aspect. In recent
years algorithms for creating photo-realistic virtual imagery have greatly improved.
Nowadays we can simulate entire virtual cities or imaginary foreign planets at a high
visual fidelity, albeit at very high computational cost. Unfortunately, the same claim
cannot be made for the rendering of virtual humans or virtual actors. Over millions
of years the human visual system has developed the ability to quickly assess other
humans, and it thus unmasks in a glimpse of an eye even the slightest flaw in the
appearance of a virtual actor. It is therefore of utmost importance that all aspects of
a virtual human, including appearance and lighting effects at the surface, geometry
and motion are modeled at the highest possible level of detail. It is no wonder that
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achieving such a high level of quality comes at a high prices which can be measured
in several man months of work for animators.

Animation professionals can resort to a set of acquisition tools which help them
to measure certain aspects of a virtual human, e.g. his motion or his shape from
real world subjects. Laser triangulation scanners can acquire full-body geometry
in a static pose. Marker-based motion capture systems can be employed to mea-
sure skeletal motion parameters, but are often cumbersome to use since they require
the captured subject to wear optical markings on the body. Recently, in the field
of computer vision we have also seen marker-less capturing systems which do not
require such optical beacons and only expect multi-view video of an actor as input.
However, most of these systems do not capture more than skeletal motion, require
controlled recording conditions, and fail to reconstruct actors in normal everyday
clothing (e.g. a skirt). It is thus fair to conclude that even state-of-the-art measure-
ment technology only captures a small subset of the complexity of a moving hu-
man’s appearance. Ideally, one would want to unify the process and measure much
richer performance models, i.e representations of detailed time-varying geometry
and appearance using just one set of multi-view video recordings.

This book presents such joint reconstruction and display approaches that enable
easier capturing of more complete scene models, as well as more faithful rendering
of virtual humans. It describes a variety of significant leaps forward which the fields
of human performance capture and animation have recently seen. In my opinion
the book takes a refreshingly different perspective on cognitive system modeling in
general and visual computing in particular. It does not focus on only the vision or
graphics side but convincingly demonstrates that a joint investigation of both facets
enables significant technological progress. I am convinced that also in other fields of
computer science and cognitive system modeling such a more integrated approach
to solving hard problems will proof highly successful.

Saarbruecken, Germany
September 2009 Christian Theobalt

MPI Informatik



Preface

In computer graphics, it is still challenging to authentically create virtual doubles
of real-world actors. Although the interplay of all steps required by the traditional
skeleton-based animation pipeline delivers realistic animations, the whole process is
still very time-consuming. Current motion capture methods are not able to capture
the time-varying dynamic geometry of the moving actors and need to be integrated
with other special acquisition techniques. Furthermore, dealing with subjects wear-
ing arbitrary apparel is still not possible. Another problem is that, even if it was
possible to capture mesh animations, it would still be difficult to post-process or
modify them. Not many papers in the literature have looked into this problem so far.

In this book, we propose algorithms to solve these problems: first, we describe
two efficient techniques to simplify the overall animation process. Afterwards, we
detail three algorithmic solutions to capture a spatio-temporally coherent dynamic
scene representation even from subjects wearing loose and arbitrary everyday ap-
parel. At the end, we also propose two novel algorithms to process mesh animations.
By this means, real-world sequences can be accurately captured and transformed
into fully-rigged virtual characters and become amenable to higher-level animation
creation, e.g. by applying non-photorealistic rendering styles.

This book consists of four parts:

• Part I begins with the description of some general theoretical background infor-
mation and elementary techniques shared by many projects in this book. There-
after, the studio used to acquire the input data for the projects described in this
book is presented.

• Part II reviews the steps involved in the traditional skeleton-based character ani-
mation paradigm and proposes two mesh-based alternatives to simplify the over-
head of the conventional process. Both techniques can be directly integrated in
the traditional pipeline and are able to generate character animations with realis-
tic body deformations, as well as transfer motions between different subjects.

• Part III describes three algorithmic variants to passively capture the performance
of human actors using a deformable model as underlying scene representation
from multiple video streams. The algorithms jointly reconstruct spatio-temporally
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coherent time-varying geometry, motion, and textural surface appearance even
from subjects wearing everyday apparel, which is still challenging for related
marker-based or marker-free systems. By using the acquired high-quality scene
representations, we also developed a system to generate realistic 3D Videos.

• Part IV proposes two novel techniques to simplify the processing of mesh anima-
tions. First, an automatic method to bridge the gap between the mesh-based and
the skeletal paradigms is presented. Thereafter, a method to automatically trans-
form mesh animations into animation collages, a new non-photorealistic render-
ing style for animations, is proposed.

Although the methods described in this book are usually tailored to deal with
human actors, their fundamental principles can also be applied to a larger class of
subjects. Each method described here can be regarded as a solution to a particu-
lar problem or used as a building block for a larger application. All together, they
exceed the capabilities of many related capture techniques and form a powerful sys-
tem to accurately capture, manipulate, and realistically render real-world human
performances.

Pittsburgh, PA
September 2009 Edilson de Aguiar
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Chapter 1
Introduction

This book presents methods for the realistic generation of virtual
doubles of real-world actors. First, two efficient mesh-based alter-
natives to simplify the overall character animation process are pro-
posed. Thereafter, three passive performance capture methods are
presented dealing with actors wearing arbitrary everyday apparel.
At the end, two novel algorithms for processing mesh animations are
described. As a whole, the methods presented here form a power-
ful system to accurately capture, manipulate and realistically render
real-world human performances, exceeding the capabilities of many
related capture techniques.

While the technology to render and model scene environments with landscapes and
buildings, natural phenomena like water and fire, and plants has reached a high
level of maturity in computer graphics, it is still hard to authentically create virtual
doubles of real-world actors. One recent example illustrating this fact is the photo-
realistic CGI movie Beowulf [12]. Only by capitalizing on recent advances in shape
acquisition, marker-based motion capture, and by drawing from the talent of a large
team of animators, it became possible to finish the movie within an allowable time
frame. Nonetheless, the high production costs illustrate that the price to be paid are
millions of man hours of tedious manual editing and post-processing.

In order to obtain a realistic virtual actor, it is important that he/she mimics as
closely as possible the motion of his/her real-world counterpart. It is thus no wonder
that the number of working hours that animators spend in order to live up to these
high requirements in visual quality is considerable. For generating virtual people,
animators commonly use the traditional skeleton-based animation pipeline: first, a
kinematic skeleton model is implanted into the geometry of the human model [10].
Thereafter, the skeleton is attached to the surface [11]. Finally, a description of the
motion in terms of joint parameters of the skeleton is required. It can either be man-
ually designed or learned from a real person by means of motion capture [9, 14].

Although the interplay of all these steps delivers realistic animations, the whole
process is still very expensive and tedious. In this book, we first describe two
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versatile, fast and simple alternatives to attack this problem that aim at simplify-
ing the overall animation process. Our methods streamline the whole pipeline from
laser-scanning to animation from motion capture, and can be directly integrated into
the traditional animation workflow.

Another complex problem in computer graphics is to capture the time-varying
dynamic geometry of actors in the real world. Currently, marker-based and marker-
free motion capture systems only measure the subject’s motion in terms of a kine-
matic skeleton. If a dynamic representation is required, motion capture approaches
need to be combined with other special techniques [8, 15, 13]. However, as these
methods demand the actors to wear skin-tight body suits, it remains impossible to
record performances under natural conditions, such as in normal clothing.

To bridge this gap, we also present in this book three algorithmic alternatives
to capture the motion and the time-varying shape deformations of people wear-
ing even wide everyday apparel and performing fast and complex motions. This is
achieved by combining an efficient mesh-deformation method and a tracking frame-
work based on image cues in multi-view video sequences. The proposed methods
achieve a high level of flexibility and versatility by explicitly abandoning any tradi-
tional skeletal parametrization and by posing performance capture as deformation
capture. Moreover, they enable us to record the subject’s appearance, which can
be used to display the recorded actor from arbitrary viewpoints, and to produce a
spatio-temporally coherence dynamic representation that can be easily made avail-
able to animators.

By using our novel performance capture techniques, we offer a great level of
flexibility during animation creation. However, currently there is only a limited
number of techniques that are able to post-process and modify the generated mesh
animations. To overcome this limitation, in this book we also propose two novel
algorithms for processing mesh animations. The first approach enables the fully-
automatic conversion of a mesh animation into a skeleton-based animation that can
be easily edited by animators. The second one automatically converts a mesh an-
imation into an animation collage, i.e. a moving assembly of 3D shape primitives
from a database. Together, they are important contributions to the animator toolbox
with a variety of applications in visual arts, movie and game productions.

Each method described here can be regarded as a solution to a particular problem
or as a building block that enables the development of novel interesting applications.
All together, they also create a powerful system to accurately capture, manipulate
and realistically render real-world human performances, going beyond the limits of
related capture techniques. The methods described in this book are usually tailored
to deal with human actors. However, the fundamental principles can also be applied
to a larger class of scenes, as described in the respective chapters.

1.1 Main Contributions and Organization of the Book

This book contains 16 chapters and it is divided into four parts, each of which fo-
cuses on one major algorithmic subproblem. In the first part (Chapters 2, 3 and
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4) some technical and theoretical background information needed to understand the
following projects is provided. After that, we begin describing the main contribu-
tions of this work in the second part (Chapters 5, 6 and 7), where two efficient and
easy-to-use solutions to directly animate a laser-scanned model from marker-based
or marker-less motion capture data are presented. These methods can be considered
alternatives to the complex traditional skeleton-based character animation pipeline.

Thereafter, the third part of the book (Chapters 8, 9, 10, 11 and 12) describes
three alternative solutions to directly and realistically create a virtual double of
a moving real-world actor, by capturing its time-varying geometry using a mesh-
deformation method from unaltered video footage. By using this high-quality cap-
tured performance, we are also able to display the recorded actor from arbitrary
viewpoints. In the last part of the book (Chapters 13, 14 and 15), we propose
two novel approaches for processing mesh animations acquired by our performance
captured methods or generated by animators.

We conclude in Chapter 16 with a description of possible future work. The meth-
ods and algorithms described in this book have been published before in a variety of
peer-reviewed conference and journal articles. The main scientific contributions as
well as the appropriate references are briefly summarized in the following sections.

1.1.1 Part I - Background and Basic Definitions

We begin in Chapter 2 by describing how a real-world camera, and the kinematics,
the shape and the appearance of a real-world subject can be modeled in a com-
puter. Afterwards, important computer vision algorithms that are employed by sev-
eral projects in the book are described.

Chapter 3 details the interactive shape deformation and editing techniques that
are also employed by several projects in the book. These methods are able to ef-
ficiently manipulate the input scanned model as naturally as possible, generating
physically plausible and aesthetically pleasing deformation results.

Finally, Chapter 4 presents our recording setup that provides high quality data for
the different projects proposed in the book. The details of the main components of
our studio and all necessary recording steps to generate the multi-view video data
are described.

1.1.2 Part II - Natural Animation of Digitized Models

Animators are able to generate photo-realistic animations using their well-
established but often inflexible set of tools. However, the skeleton-based paradigm
still requires a high amount of manual interaction. In Chapter 5, we first describe
the drawbacks of the traditional skeleton-based character animation pipeline. There-
after, we review the most important related work on character animation, as well as
possible solutions to simplify the overall animation process.

Chapter 6 and 7 present two versatile, fast and simple methods that streamline
the whole pipeline from laser-scanning to character animation [4, 6, 7]. Although
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the algorithms abandon the concept of a kinematic skeleton, they integrate into the
traditional animation workflow and enable animators to quickly produce convincing
animation results with minimal manual effort.

1.1.3 Part III - Towards Performance Capture Using Deformable
Mesh Tracking

Stepping directly from a captured real-world sequence to the corresponding realistic
moving character is still a challenging task. In chapter 8, we first introduce our three
solutions to attack this problem. Thereafter, we review the closely related work in
human motion capture, dynamic scene reconstruction, and 3D video.

Chapter 9 presents the first alternative to accurately and automatically track the
motion and time-varying non-rigid surface deformations of people wearing every-
day apparel from a handful of multi-view video streams. This is achieved by com-
bining an optical flow-based 3D correspondence estimation technique with a fast
Laplacian-based tracking scheme [3].

Chapter 10 presents a second alternative that combines a flow-based and an
image-feature based tracking method. Furthermore, we divide the problem into two
steps: first, a simple and robust method is proposed to automatically identify and
track features on arbitrary subjects. Thereafter, using the 3D trajectories of the fea-
tures, an efficient Laplacian-based tracking scheme is used to realistically animate
a static human body scan over time [2].

Chapter 11 presents our more advanced video-based performance capture system
that passively reconstructs spatio-temporally coherent shape, motion, and texture of
actors at an unprecedented quality [1]. The approach combines a new skeleton-less
shape deformation method, a new marker-less analysis-through-synthesis frame-
work for pose recovery, and a new model-guided multi-view stereo approach for
shape refinement, thereby exceeding the capabilities of many related capturing ap-
proaches.

Finally, in Chapter 12, we present a system to render high-quality 3D Videos that
enables convincing display of human subjects from arbitrary synthetic viewpoints.
Our approach combines our detailed dynamic scene representation with a projective
texture method [1] and leads to a better visual quality as compared to previous
approaches.

1.1.4 Part IV - Processing Mesh Animations

Animators are used to a large repertoire of tools for editing and rendering tradi-
tional skeletal animations, but yet lack the same set of tools for working with mesh
animations, i.e. our mesh-based dynamic scene representations. In Chapter 13, we
first introduce two novel approaches for processing mesh animations. Afterwards,
we review the closely related work in mesh segmentation, skeleton reconstruction,
character skinning, mesh animation editing, and shape matching.
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Chapter 14 presents our first algorithm to process mesh animations. We describe
an algorithm to fully-automatically extract a skeleton structure, skeletal motion pa-
rameters, and surface skinning weights from arbitrary deforming mesh sequences,
thereby enabling easy post-processing and fast rendering of mesh animations with
standard skeleton-based tools [5].

The second method for post-processing mesh animations is presented in
Chapter 15. Our system is able to automatically transform mesh animations into
animation collages, i.e. a complete reassembly of the original animation in a new
abstract visual style that imitates the spatio-temporal shape and deformation of the
input [16].
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Chapter 2
Preliminary Techniques

In this chapter, first some general theoretical background information
about camera and human models are given. Thereafter, elementary
computer vision techniques that many of the projects in this book cap-
italize on are described.

Several projects described in this book have synchronized multiple video streams as
input, Chapter 4. Therefore, in order to correctly simulate the imaging process of the
cameras in a computer, a mathematical camera model is required. Such formulation
is detailed in Sect. 2.1, where the correspondence between a real camera and its
computational equivalent is presented. After that, we briefly describe the process of
camera calibration and the imaging geometry of stereo cameras.

The description of how we model the shape, kinematics and appearance of a
real-world subject in a computer is detailed in Sect. 2.2. Although the projects in
this book are usually tailored to human actors, the fundamental principles described
here can also be applied to a larger class of real-world subjects, like animals.

This chapter concludes in Sect. 2.3 with a description of important computer
vision algorithms employed by several projects proposed in this book. In particular,
we briefly describe how to perform background subtraction, and how to calculate
optical flow, scene flow and SIFT features.

2.1 The Camera Model

The information contained in a 3D scene can be captured to a 2D image plane by
a camera as follows: first, a lens collects the incident illumination. Afterwards, the
light rays are deflected towards a focal point, and at the end, the deflected rays
create an image of the observed scene. In the following sections, we will describe
the mathematical framework for mapping the 3D world space to the 2D image plane,
the process of camera calibration and the geometry of stereo cameras.

2.1.1 Mathematical Model

A pinhole camera model describes the image formation process of a camera by a
projective linear transformation [5]. Let pwo = (px, py, pz,1)T be a point specified
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in the world coordinate frame, Fig. 2.1. Its projected location in the image plane pim
of the camera evaluates to:

pim = KOpwo =

⎡
⎣

αx 0 x0

0 αy y0

0 0 1

⎤
⎦

[
R −Rc
0 1

]
pwo (2.1)

In Eq. 2.1, R is a 3 × 3 rotation matrix that represents the orientation of the cam-
era’s local coordinate frame with respect to the world coordinate frame and c ∈ R

3

is the Euclidean world coordinate of the camera’s center of projection. The parame-
ters R and c are called the external or extrinsic parameters of the camera. The matrix
K can be referred to as the calibration matrix and its entries are called the intrin-
sic parameters of the camera. The principal point in the image plane is at position
(x0,y0), at the intersection of the optical axis with the image plane. The coefficients
αx = f mx and αy = f my represent the focal length of the camera in terms of pixel
dimensions in x and y directions, respectively. The focal length f of the camera, and
mx and my represent the number of pixels per unit distance in image coordinates
in x and y respectively. Therefore, a real-world camera can be represented by 10
parameters.

However, unfortunately the physical properties of lenses make the previous im-
age formation process geometrically deviate from the ideal pinhole model. Geo-
metric deviations are typically caused by radial or tangential distortion artifacts [8].
Radial distortion happens since a real lens bents light rays towards the optical center
by more or less than the ideal amount. Tangential distortion are caused by the bad
alignment of the individual lenses in an optical system with respect to the overall
optical axis [16].

Fig. 2.1 The imaging process of a real-world camera is simulated by the mathematical camera
model.
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2.1.2 Camera Calibration

Camera calibration is the process of determining the parameters of the mathemati-
cal model that optimally reflect the geometric and photometric imaging properties
of the real camera. The most important calibration step is the geometric calibration,
where the parameters of the imaging model detailed in Sect. 2.1.1 are estimated. The
majority of the calibration algorithms [14, 8, 6] take into account radial and tangen-
tial lens distortions and derive these parameters from images of a calibration object
with known physical dimensions, such as a checkerboard pattern, Sect. 4.3.1.1. The
parameters are estimated by means of an optimization procedure that modifies the
model parameters until the predicted appearance of the calibration object optimally
aligns with the captured images.

Additionally, color calibration can be applied to ensure correct color reproduction
under a given illumination setup. White balancing is the simplest color calibration
procedure that computes multiplicative scaling factors from an image of a purely
white or gray object. In our projects, we also developed a more sophisticated relative
calibration procedure that assure color-consistency across the cameras, Sect. 4.3.1.2.

2.1.3 Geometry of Stereo Cameras

A stereo camera comprises of a pair of cameras whose viewing directions converge,
and it can be used to derive 3D structural information about the scene. If both cam-
eras are fully-calibrated (intrinsic and extrinsic parameters), the 3D position of a
point p visible in both cameras can be calculated via triangulation, Fig. 2.2(a). The
position p is estimated by computing the intersection point of two rays, rA and rB.
The ray rA originates in the center of projection of camera A, cA, and passes the im-
age plane in the position pA. The same construction is valid for ray rB from camera
B. However, due to measurement noise, the rays will not intersect exactly at a single
point. In this case, we can compute a pseudo-intersection point that minimizes the
sum of squared distance to each pointing ray.

(a) (b)

Fig. 2.2 Geometry of stereo cameras: (a) Triangulation - the 3D position of a point p is
calculated by the intersection of the two rays, rA and rB, through the respective cameras’
centers of projection, cA and cB, and the respective projected image plane positions, pA and
pB. (b) Epipolar geometry - The point pA in camera A corresponds to the point pB in camera
B that lies in the epipolar line eB.



12 2 Preliminary Techniques

The epipolar geometry describes the image formation process in a stereo pair of
cameras, Fig. 2.2(b). It describes the fact that an image point pA in camera view
A has a corresponding point pB in the camera view B, which lies on a line eB

in image B, the so-called epipolar line. The epipolar geometry of a stereo pair is
fully-specified by its fundamental matrix. The fundamental matrix can be inferred
from 8 point correspondences between two uncalibrated cameras, and it is directly
available for fully-calibrated camera pairs [4, 5]. By using the fundamental matrix
and the epipolar line, image correspondences can be computed using simple ma-
trix multiplications, which reduces the problem to an one-dimensional search space
along a line.

2.2 Modeling Humans

The appearance, and the physical and kinematic properties of a real-world human
body are the result of the interplay of many complex physiological components.
For example, the appearance of the skin is the result of structural pigmentation,
light interaction on the body surface, and the deformation of muscles and connec-
tive tissues. The kinematic properties of the human body are mainly determined
by its skeleton structure, i.e. bones and interconnecting joints. The kinematics also
influences the physical shape of the person. Therefore, an authentic computational
human model has to realistically represent the shape, kinematics and appearance of
the real human. Such representations are described in the following sections.

2.2.1 Modeling the Shape

The surface geometry of the human body is typically modeled by means of a triangle
mesh. A mesh is a collection of vertices, edges and faces that defines the shape of
an object in computer graphics. The faces usually consist of triangles, which are
connected by their common edges.

In our projects, we acquired the geometric details of the human body by us-
ing a full body laser scanner, Sect. 4.2.4. Our computational model of the shape is
obtained by transforming the raw scans, i.e. triangulated depth maps, into a high-
quality surface mesh employing a Poisson reconstruction method [9]. By using such
scanning device, we are able to capture not only the coarse shape of the actor, but
also fine details in the body shape and in the apparel. Moreover, such acquisition
technology enables us to easily model different subjects.

In most projects in this book, we abandon the concept of a kinematic skeleton to
represent the motion and deformations of the virtual actor. By doing this, our novel
algorithms rely mostly on the high-quality model of the actor’s shape to simultane-
ously capture rigid and non-rigidly deforming surfaces from multiple synchronized
video streams.



2.3 Computer Vision Algorithms 13

2.2.2 Modeling the Appearance

Another important component contributing to a realistic look of a virtual human
is the surface texture. A possible way to reproduce the appearance of a real-world
actor is to reconstruct a consistent surface texture from images showing the subject.
However, a static texture cannot reproduce dynamic details, such as wrinkles in the
apparel.

In our projects, we use dynamic surface textures that incorporate such time-
varying details. The multiple video streams are recorded in our studio by cameras
providing high frame-rates, high resolution and precise color reproduction, Chap-
ter 4. Therefore, realistic virtual actors are generated by combining the multiple
synchronized footage with the model’s pose at each particular frame, Chapter 12.

2.2.3 Modeling the Kinematics

The computational equivalent of the human skeleton is a kinematic skeleton, that
mathematically models a hierarchical arrangement of joints and interconnecting
bones [13]. The human skeleton is usually approximated by a collection of kine-
matic sub-chains, where the relative orientation between one segment and the sub-
sequent one in the hierarchy is controlled via a rigid body transformation. It jointly
describes a rotational and a translational transformation between the local coordi-
nate frames of adjacent rigid bodies.

The translational components of the rigid body transformations are implicitly
represented by the bone lengths and the joints model the rotational components.
Since the bone lengths are constant, the pose of the skeleton is fully-specified by the
rotation parameters for each joint and an additional translational parameter for the
root. Such kinematic models are automatically learned from arbitrary mesh anima-
tions in Chapter 14.

2.3 Computer Vision Algorithms

2.3.1 Background Subtraction

In the projects described in this book, a method to robustly segment a person in the
foreground of a scene from the background is necessary. Due to its robustness, we
decided to use the color-based method originally proposed in [3], which incorpo-
rates an additional criterion to prevent shadows from being erroneously classified
as part of the scene foreground. The technique employs per-pixel color statistics
for each background pixel that is represented by a mean image Π = {μ(x,y) | 0 ≤
x < width,0 ≤ y < height} and a standard-deviation image Σ = {σ(x,y) | 0 ≤ x <
width,0 ≤ y < height}, with each pixel value being a 3-vector comprising all three
color channels. The statistics is generated from consecutive input image frames of
the background scene without an object in the foreground, in order to incorporate
the pixel intensity variations due to noise and natural illumination changes.
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(a) (b)

Fig. 2.3 Background subtraction: input image frame (a) and the corresponding silhouette
mask (b). Our background subtraction method correctly segments the foreground subject
from the background.

The background subtraction method classifies an image pixel p(px, py) as fore-
ground if the color of p(px, py) differs in at least one RGB channel by more than an
upper threshold Tu from the background distribution

| p(px, py)c − μ(px, py)c |> Tu ·σ(px, py)c, c ∈ {r,g,b} (2.2)

If this difference is smaller than the lower threshold Tl in all channels, it is clas-
sified as a background pixel. All pixels which fall in between these thresholds are
possibly in shadow areas and can be classified depending on the amount of variation
in the hue value. The difference in hue can be calculated as

Δ = cos−1
(

p(px, py) · μ(px, py)
‖p(px, py)‖‖μ(px, py)‖

)
. (2.3)

If Δ > Tang, the pixel is classified as foreground, otherwise as background. At the
end, a 0/1-silhouette mask image for each input video frame is computed, Fig. 2.3.

2.3.2 Optical Flow

Optical flow is the projection of the 3D motion field of a real-world dynamic scene
into the 2D image plane of a recording camera. Algorithms used to calculate optical
flow attempt to find correlations between adjacent frames, generating a vector field
showing where each pixel or region in one frame moved to in the next frame.

In computer vision, a number of simplifying assumptions are usually made to
compute the optical flow from the pixel intensities of two consecutive images. The
basic assumption is that the pixel intensity does not significantly change between
two subsequent frames, the so-called intensity constancy constraint:
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I(u, t) = I(u − ot,0), (2.4)

where o = (p,q)T is the optical flow at image point u = (u,v)T , and I(u, t) is the
image intensity at coordinates (u,v) and time t. As a pixel at location (u,v)T with
intensity I(u,t) moves by δu between two frames, the intensity constraint equation
can be formulated as follows:

I(u, t) = I(u + δu, t + δt). (2.5)

From the Taylor series approximations, Eq. 2.5 leads to:

∇I(u, t) ·o+ It(u, t) = 0, (2.6)

where It(u,t) is the temporal derivative of the image intensity. In order to make the
problem well-posed, additional assumptions need to be made about the smoothness
of the optical flow field in a local spatial neighborhood.

In the differential optical flow approach by Lucas and Kanade [12], the flow
is assumed to be constant in a small neighborhood. The solution is achieved by
minimizing the following functional

∑
u∈W

W 2(u)[∇I(u, t) ·o+ It(u, t)]2, (2.7)

where W (u) defines a Gaussian neighborhood around the current position in the
image plane for which the optical flow is computed. Alternatively, a hierarchical
variant can be employed that incorporates flow estimates from multiple levels of an
image pyramid into its final result.

Using the same basic formulation, a large number of algorithms have been pro-
posed in the literature. In general, they are based on the Horn-Schunck model [7],
that additionally uses a global smoothness constraint to regularize the optical flow
computation. An example is the dense optical flow method by Black et al. [1]. The
approach is based on a statistical framework that enables the robust estimation of
flow fields addressing violations of the intensity constancy and spatial smoothness
assumptions. As a result, the method is able to deal with discontinuities in the flow
field.

Recently, Brox et al. [2] proposed a multiresolution warping-based method for
dense optical flow that uses a continuous, rotationally invariant energy functional.
The energy functional E(u,v) is composed by a weighted sum between a data term
ED(u,v) and a smoothing term ES(u,v) as follows:

E(u,v) = ED(u,v)+ αES(u,v).

The data term contains the intensity constancy assumption, as in Eq. 2.4, and a
gradient constancy assumption described by ∇I(u, t) = ∇I(u − ot,0), which makes
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the framework susceptible to slight changes in brightness. By this means, the over-
all energy functional becomes more robust against intensity value changes. The
smoothness term ES(u,v) takes into account neighboring information to improve
the calculation of the flow field by penalizing its total variation.

The global minimum solution is found via a multiscale approach. One starts by
solving a coarse, smoothed version of the problem. Thereafter, the coarse solution
is used as initialization for solving a refined version of the problem until step by
step the original problem is solved. Additionally, the energy functional E(u,v) is
designed using the non-linearized data terms and linearizations are computed during
the numerical scheme used to solve it. By this means, the overall method improves
the convergence of the solution to the global minimum, generating more accurate
results.

2.3.3 Scene Flow

The scene flow is a three-dimensional flow field describing the motion of every 3D
point in the scene. Following [15], we consider x = x(t) the 3D path of a point in
the world, and dx

dt its instantaneous scene flow. If the image of this point in camera

Ci is ui = ui(t), the optical flow o = dui
dt is the projection of the scene flow into the

image plane:
dui

dt
=

∂ui

∂x
dx
dt

, (2.8)

where ∂ui
∂x is the 2 × 3 Jacobian matrix that represents the differential relationship

between x and ui.
The Eq. 2.8 expresses the fact that any optical flow dui

dt is the projection of the
scene flow dx

dt . Therefore, assuming that the optical flow has been computed for a
particular point in the scene for two or more camera views, the scene flow can be
recovered.

If N > 2 cameras see a particular point, the solution that minimizes the sum of
least squares of the error can be obtained by reprojecting the scene flow onto each

of the optical flows. Therefore, the values of
dx j
dt can be calculated by solving the

system of equations B
dxj
dt = U via singular value decomposition, where

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1
∂x

∂u1
∂y

∂u1
∂ z

∂v1
∂x

∂v1
∂y

∂v1
∂ z

. . .

. . .
∂uN
∂x

∂uN
∂y

∂uN
∂ z

∂vN
∂x

∂vN
∂y

∂vN
∂ z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1
∂ t

∂v1
∂ t
.
.

∂uN
∂ t

∂vN
∂ t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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2.3.4 Image Features

A feature is an interesting part of an image that is commonly used to guide many
computer vision algorithms. Once a feature is detected, a local image patch around
it can be extracted and a feature descriptor or feature vector can be computed. An
important algorithm to detect and describe local features in images is the Scale-
invariant feature transform (or SIFT) [10, 11]. The SIFT features are local, and
invariant to image scale and rotation. They are also robust to changes in illumination,
noise, occlusion, and viewpoint.

The method begins by detecting interest points, also called keypoints. For this,
the image is convolved with Gaussian filters at different scales, and the difference of
successive Gaussian-blurred images are considered. Keypoints are chosen as max-
ima/minima of the Difference of Gaussians (DoG) that occur at multiple scales.
Specifically, a DoG image D(σ) is given by

D(σ) = L(kiσ)− L(k jσ), (2.9)

where L(kσ) = G(kσ)∗ I is the original image I convolved with the Gaussian blur
G(kσ) at scale kσ .

Unfortunately, the previous step produces too many keypoint candidates, some
of which are unstable. Therefore, the algorithm discards low contrast keypoints and
filters out those located on edges. Afterwards, each remaining keypoint is assigned
one or more orientations based on local image gradient directions. This enables
invariance to rotation as a keypoint descriptor can be represented relative to this
orientation.

At the end, descriptor vectors are computed for these keypoints such that they are
highly distinctive and partially invariant to illumination and viewpoint. The feature
descriptor is computed as a set of orientation histograms on a 4 × 4 pixel neighbor-
hood, yielding a feature vector with 128 elements.
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Chapter 3
Interactive Shape Deformation and Editing
Methods

This chapter reviews the most relevant work on interactive shape de-
formation and editing techniques, and describes the three main defor-
mation approaches used in this book.

In recent years, interactive shape deformation and editing techniques have become
an active field of research in computer graphics, Sect. 3.1. Commonly, the input to
such techniques is a triangle mesh to be deformed, denoted by Mtri = (Vtri,Ttri),
which consists of n vertices Vtri = {v1 · · ·vn} and m triangles Ttri = {t1 · · · tm}. The
goal is the development of algorithms to efficiently edit and manipulate Mtri as
naturally as possible under the influence of a set of constraints specified by the user.

Physical simulation [22] and non-linear deformation methods [25, 7] are able to
deliver accurate and physically-correct deformation results. However, unfortunately
these methods require the minimization of complex non-linear energies, which often
makes them difficult to implement and computationally too expensive to be used
in an interactive environment, where different constraints are used to update and
correct the shape of a model on-the-fly.

In general, in order to be interactive, editing methods need to be based on easy-
to-compute linear deformations that still generate physically plausible and aestheti-
cally pleasing deformation results, i.e. deformations should be smooth or piecewise
smooth and the result should preserve the local appearance of the surface under
deformation. Recently, linear deformation methods based on differential represen-
tations have gained more popularity because they are fast to compute, robust, and
easy to implement, as the associated linear system is sparse. Instead of directly
modify the spatial location of each vertex in the model, they use a local differential
representation of the shape, which encodes information about its local shape and the
size and orientation of the local details, to obtain a detail-preserving deformation re-
sult. Deformation is performed by constructing a differential representation of the
shape, manipulating it according to the given constraints, and finally reconstruct-
ing the shape from the modified differential representation. While sharing the same
general framework, the two main categories of differential techniques differ by the

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 19–27.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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particular representation they use: deformation gradients, Sect. 3.2.1, or Laplacian
coordinates, Sect. 3.2.2.

In general, when applying these methods, the resulting deformation is dependent
on the particular embedding of the surface in space. During model manipulation,
its local representation is not updated, which may lead to unnatural deformations.
This happens since the surface deformation problem is inherently non-linear, as it
requires the estimation of local rotations to be applied to the local differential repre-
sentations. To correct this limitation in the linearization process, many approaches
were developed in the last years attacking this problem from different directions,
Sect. 3.1. After reviewing the most relevant related work on interactive shape de-
formation techniques in the next section, we first present two surface-based tech-
niques used later in this book: the guided Poisson-based approach and the guided
Laplacian-based technique, Sect. 3.2.1 and Sect. 3.2.2 respectively. Thereafter, an
iterative volumetric approach is described, Sect 3.3. As can be seen later, the mesh
deformation techniques presented in this chapter are key components for the ad-
vanced methods proposed in this book.

3.1 Related Work

Interactive shape editing is an important field of research in computer graphics,
and consequently a variety of different solutions were proposed to solve this prob-
lem [9]. Early methods like free-form deformation [24] or space deformations [5,
21] enable high-quality shape modeling by directly manipulating the 3D space
where the object is embedded. However, they typically fail to reproduce correct
deformation results if only a small number of constraints is used.

Some approaches propose to solve the computationally expensive non-linear
surface deformation problem directly. [25, 17] propose a non-linear differential co-
ordinate setup, while [7] minimizes bending and stretching energies using a cou-
pled shell of prisms. [15] employs a non-linear version of the volumetric graph
Laplacian and [33] presents an extension of the non-linear Poisson-based deforma-
tion approach applied to mesh sequences. Alternatively, [4] proposes a non-linear
handle-aware isoline technique and [26] combines Laplacian-based deformation
with skeleton-based inverse kinematics. In general, the main limitation of these non-
linear methods is often that interactive deformation is only feasible on models of
reduced complexity.

Interactive performance for more complex objects can be achieved by simplifying
the inherent non-linear problem. One way to preserve geometric details under global
deformations is to use multi-resolution techniques [38, 16, 14, 18, 6]. While these
approaches are an effective tool for enhancing fine-scale detail preservation, the
generation of the hierarchy can be expensive for complex models. Moreover, it is
hard to deal with large deformations in a single step. These limitations are the main
reason for differential-based deformation approaches, which represent the model
using its local differential coordinates instead of using its spatial coordinates.

Typically, two differential representations can be used: deformation gradients
or Laplacian coordinates. Poisson-based methods use the input transformation
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constraints given by the user to modify the surface gradients of the model. [35]
presents a Poisson-based mesh editing method where the local transformations are
propagated based on the geodesic distances. [36] replaces the geodesic propaga-
tion scheme by harmonic field interpolation and shows that this leads to a better
estimation of the local transformations. [23] extends the harmonic field interpola-
tion scheme to deal with different materials. Unfortunately, although these methods
work well for rotations, since they are handled explicitly, they are insensitive to
translations.

Laplacian-based methods represent vertex coordinates relative to their neighbors
in the model [3]. Although the original framework can not correctly deal with rota-
tions, recent improvements allow the methods to work similarly well for translations
and rotations. [19] describes how local rotations can be estimated and incorporated
to the original framework. [30] proposes to use the Laplacian representation com-
bined with implicit transformation optimization. [11] presents a hybrid scheme
combining implicit optimization with a two-step local transformation estimation. In
general, although these methods are able to estimate local rotations, the required
linearization yields artifacts for large rotations.

Generally, most of these methods suffer from linearization problems: methods
which use translational constraints are insensitive to rotations, whereas methods
relying on rotational constraints exhibit insensitivity to translations. To solve this
problem, recent methods use skeleton-based techniques [34], multi-step approaches
[10], or iterative approaches [29].

Most linear deformation methods rely on a triangle mesh representation. How-
ever, deforming a surface model may cause local self intersections and shrinking
effects. To prevent such artifacts, some methods use a volumetric structure as basis
for the linear deformation [37, 31].

Another class of approaches is able to manipulate an object while guaranteeing
volume preservation by defining deformations based on vector fields [12]. Although
it enables the definition of advanced implicit deformation tools, it is still hard to
construct vector fields that satisfy the user-defined constraints.

3.2 Mesh Editing Techniques

In this section, we review the two surface-based deformation techniques based on
differential representations and describe the respective steps needed to reconstruct
the deformed surfaces.

3.2.1 Guided Poisson-Based Method

Inputs to this method are a static triangle mesh Mtri and affine transformations (ro-
tation and scale/shear components) R j, j ∈ {1, . . . ,nc}, to be applied to nc selected
triangles of the input model. The Poisson-based editing scheme manipulates the
mesh gradient field instead of directly deforming the spatial coordinates of a trian-
gle mesh. By expressing the mesh in terms of the gradient operators Gj, for each
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triangle t j, Poisson-based methods are able to derive a novel surface mesh M ′
tri

that matches the deformed gradient field subject to the user’s constraints.
Gradient operators G j contain the gradients of the triangle’s shape functions φi

and can be expressed by

G j = (�φ1,�φ2,�φ3)

=

⎛
⎝

(p1 − p3)T

(p2 − p3)T

nT

⎞
⎠

−1 ⎛
⎝

1 0 −1
0 1 −1
0 0 0

⎞
⎠

Here p j are the three vertices of the triangle t j and n is its unit normal. The matrices
G j can be combined into a large 3m×n gradient operator matrix G, and the gradients
of the entire input triangle mesh then can be represented by

Gpx = gx. (3.1)

The same holds true for the other two coordinate functions (gy and gz). By multi-
plying with GT M an both sides, we can rewrite Eq. 3.1 as follows

GT MGpx = GT Mgx , (3.2)

where the 3m× 3m weight matrix M contains the areas of the triangles. The matrix
GT MG is the cotangent discretization of the Laplace-Beltrami operator Ls [10, 20]
and δ = GT Mgx represents the differential coordinates of Mtri.

This construction allows us to manipulate Mtri by applying the user constraints
as separate transformations R j to each δ j, which yields δ ′

j = δ jR j. At the end, we
can reconstruct M ′

tri in its new target configuration by computing the new vertex
positions p′ such that the resulting mesh complies with the new, rotated gradients.
This can be computed by solving the Poisson system Ls p′ = δ ′, which is formulated
as a least-squares system for each x, y and z-coordinate separately.

Unfortunately, this formulation is only able to correctly reconstruct M ′
tri if con-

straints are given for all triangles, i.e. such that we can transform all gradients. Al-
ternatively, if only a sparse set of constraints is giving, the idea proposed in [36, 2]
can be used to propagate the rotations over the whole model based on harmonic field
interpolation.

After converting the input transformations R j to unit quaternions, we regard each
component of the quaternion q = [qx,qy,qz,qw] as a scalar field defined over the
entire mesh. A smooth interpolation is generated by regarding these scalar fields as
harmonic fields defined over Mtri, and can be computed efficiently by solving the
Laplace equation (Lsq = 0) with constraints at the selected vertices. Once the rota-
tional components (qx, qy, qz and qw) are computed for all vertices, we average the
quaternion rotations of the vertices to obtain a quaternion rotation for each triangle.
This way, we establish a geometric transformation R j for each triangle t j of Mtri.

After estimating the rotations for all triangles, we perform the procedure de-
scribed above to transform all gradients and obtain a realistic reconstruction of
the model in a new pose. During the interactive editing process, the differential
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operator matrix Ls does not change. Furthermore, since it is symmetric positive def-
inite, we can perform a sparse Cholesky decomposition as a preprocessing step and
use back-substitution for each new set of input constraints R.

3.2.2 Guided Laplacian-Based Method

The input to this approach is a static triangle mesh Mtri and positional constraints
v j ≈ pcj, j ∈ {1, . . . ,nc} for selected nc vertices of Mtri. The Laplacian-based edit-
ing scheme represents the surface by the differential coordinates δ . The goal is to
reconstruct the vertex positions of M ′

tri such that the mesh approximates the initial
differential coordinates δ , and the positional constraints given by the user.

Differential coordinates δ for Mtri are computed by solving a linear system of the
form δ = LsVtri, where Ls is the discrete Laplace operator based on the cotangent-
weights [20]. Thereafter, the model M ′

tri can be reconstructed in a new pose subject
to the positional constraints pc by solving the following least-squares system:

argmin
V ′

tri

{‖LsV
′

tri − δ‖2 +‖AV ′
tri − pc‖2}, (3.3)

which can be transformed into a linear system

(LT
s Ls + AT A)V ′

tri = LT
s δ + AT pc. (3.4)

In Eq. 3.4, pc is the vector of positional constraints specified by the user and the
matrix A is a diagonal matrix containing non-zero weights Ai j = wj for constrained
vertices v j. The weights wj indicate the influence of the corresponding positional
constraint pc j on the final deformation result.

Unfortunately, if the mesh undergoes large rotations, this scheme will reconstruct
the mesh with an unnatural look, since most of the triangles will be oriented accord-
ing to the original differential coordinates of Mtri [30]. However, the quality of the
deformation result can be improved by carefully handling the local transformations
of the differential coordinates [32, 1].

As in Sect. 3.2.1, after converting the input rotations R to quaternions, we in-
terpolate the transformations q over Mtri. Each component of the quaternion q is
regarded as a scalar field defined on the entire mesh. A smooth interpolation is
guaranteed by regarding these scalar fields as harmonic fields. The interpolation is
performed efficiently by solving the Laplace equation Lsq = 0 over the entire mesh
with constraints at the selected vertices.

Thereafter, we use the interpolated local transformations to rotate the differential
coordinates, δ ′ = q · δ · q. At the end, the vertex positions V ′

tri of M ′
tri are recon-

structed such that the mesh approximates the rotated differential coordinates δ ′, as
well as the positional constraints pc. Rewriting Eq. 3.4, we have the following linear
system

(LT
s Ls + AT A)V ′

tri = LT
s δ ′ + AT pc. (3.5)
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During the mesh editing process, the Laplacian matrix Ls does not change. There-
fore, we are able to perform a sparse matrix decomposition and execute only back-
substitution for each new set of input constraints.

3.3 Iterative Volumetric Laplacian Approach

In contrast to the two previous methods, the iterative volumetric Laplacian method
works on a tetrahedral mesh Ttet = (Vtet ,Ttet ), with nt vertices Vtet = {vt1 · · ·vtnt }
and mt tetrahedra Ttet = {tt1 · · ·ttmt }. A tetrahedral mesh can, for instance, be created
from a triangle mesh Mtri by performing a quadric error decimation on Mtri [13]
and then building a face-constrained Delaunay tetrahedralization [28].

The input to this approach [31] is Ttet and positional constraints pc j, j ∈{1, . . . ,nc}
for nc selected vertices. This method infers rotational constraints from the given po-
sitional constraints and also improves the overall deformation performance by im-
plicitly encoding stronger prior on the shape properties that should be preserved
after the deformation, such as local cross-sectional areas.

It is our goal to deform the tetrahedral mesh Ttet as naturally as possible under
the influence of a set of positional constraints vt j ≈ pc j, j ∈ {1, . . . ,nc}. To this end,
we iterate a linear Laplacian deformation step and a subsequent update step, which
compensates the (mainly rotational) errors introduced by the nature of the linear
deformation. This algorithm is related to [29]. However, here a tetrahedral construc-
tion is used rather than a triangle mesh, as this enables the implicit preservation of
certain shape properties, such as cross-sectional areas, after deformation.

The approach starts by constructing the tetrahedral Laplacian system LsVtet = δ
with

Ls = GT DG , (3.6)

and
δ = GT Dg , (3.7)

where G is the discrete gradient operator matrix for the volumetric model, D is
a 4mt × 4mt diagonal matrix containing the tetrahedra’s volumes, g is the set of
tetrahedron gradients, each being calculated as g j = G j p j [10], and p j is a matrix
containing the vertex coordinates of tetrahedron tt j. The constraints pc j can be fac-
torized into the matrix Ls by eliminating the corresponding rows and columns in the
matrix and incorporating the values into the right-hand side δ .

By solving the previous tetrahedral Laplacian system, we obtain a set of new
vertex positions V

′
tet = {vt

′
1 . . .vt

′
nt
}. After calculating a transformation matrix Ti

which brings tti into configuration tt ′i, the matrix Ti is split into a rigid part Ri and
a non-rigid part Si using an iterative polar decomposition method [27]. Thereafter,
only the rigid transformations are applied to the gradients of all respective tetrahedra
in Eq. 3.7 and we rebuild the right-hand side of the linear system using these rotated
gradients g′ = g ·R. It is possible to pre-calculate a factorization of the left-hand side
matrix once (since it never changes) and only perform an efficient back-substitution
in each iteration.
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During the iteration process we search for a new configuration of the input shape
that minimizes the amount of non-rigid deformation Si remaining in each tetrahe-
dron. We refer to this deformation energy as ED = ∑i∈Ttet Si. In comparison with
simulation methods such as [22, 8], this technique has the advantages of being ex-
tremely fast, of being very easy to implement, and of producing plausible results
even if material properties are unknown.

Propagating the deformation from Ttet to Mtri

After deforming Ttet , we can transfer the pose from T ′
tet to the input triangle mesh.

Initially, we represent the vertices of Mtri as linear combinations of tetrahedra in the
local neighborhood. To this end, for each vertex vi in Mtri, we find the subset Tr(vi)
of all tetrahedra from Ttet that lie within a local spherical neighborhood of radius r
and contain a boundary face with a face normal similar to that of vi. Subsequently,
we calculate the barycentric coordinate coefficients ci( j) of the vertex with respect
to all tt j ∈ Tr(vi) and compute the combined coefficient vector ci as

ci =
∑tt j∈Tr(vi) ci( j)φ(vi,tt j)

∑tt j∈Tr(vi) φ(vi,tt j)
.

φ(vi,tt j) is a compactly supported radial basis function with respect to the distance
of vi to the barycenter of tetrahedron tt j:

φ(vi,tt j) =
{

0 if d > r
(1 − d

r )4( 4d
r + 1) if d ≤ r

with d = ‖vi − center(tt j)‖ .

The coefficients for all vertices of Mtri are combined into a matrix B. Thanks to
the smooth partition of unity definition and the local support of our parameteriza-
tion, we can quickly compute a smooth and natural looking deformed pose M ′

tri by
calculating the new vertex positions as V ′

tri = V ′
tetB .
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Chapter 4
Recording Studio: Data Acquisition and Data
Processing

This chapter describes our recording studio. First, the physical stu-
dio, the camera system, and the full body laser scanner are presented.
Thereafter, the acquisition pipeline is detailed, with all necessary
steps to generate the input data for the projects described in this book.

It is a new trend in computer graphics to employ data acquired from the real world
into the animation or rendering pipeline. For instance, the new research directions of
performance capture and 3D Video investigate the possibility of generating realistic
moving human models of real subjects from a set of images or video streams of the
subject performing.

In this chapter, we extend the studio described in [30], which was originally de-
signed for different surround vision applications. We present our new acquisition
setup that provides high quality data for the different projects involving arbitrary
subjects, motions, and clothing styles. Although our focus is different from previ-
ous work, the old functionality should be preserved, and augmented to meet the
new requirements: high frame rates, high image resolution, better lighting condi-
tions, and a device to reconstruct high-quality surface models for the subjects being
recorded.

This chapter is structured as follows: Sect. 4.1 presents related acquisition sys-
tems for capturing multi-view video data. Thereafter, the details of the main com-
ponents of our studio are presented, Sect. 4.2. At the end, in Sect. 4.3, all necessary
recording steps to generate the data used in our projects are described, including
camera calibration, recording session and data processing.

4.1 Related Acquisition Facilities

For video-based human motion capture, researchers use multiple video streams
showing a moving person from different viewing directions to acquire the motion
parameters. Commercial motion capture systems exist that use optical markers on
the body in connection with several high-resolution special purpose cameras [21].
Examples of such commercial systems are provided by [1, 2, 24, 3, 4, 5].
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In contrast, marker-free motion capture systems do not require any intrusion
into the scene. Examples of early motion capture acquisition systems are presented
by [11, 17, 14] and [7, 18] using reconstructed volumes. Most recently, a system
using a database of human shapes and fast high-resolution cameras was presented
by [8]. A commercial marker-less motion capture system developed by Organic
MotionTM [27] is also available. Please refer to [25] for an extensive review of
video-based motion capture systems.

Multi-view video streams can also be used for scene reconstruction. In this case,
the viewer has the possibility to interactively choose the viewpoint of the dynamic
3D scene, while it is rendered [22]. A system for recording and editing 3D videos
is described in [35] and further extended in [101]. Examples of other 3D Video
systems are presented by [20, 28].

Alternatively, for reflectance acquisition systems, different acquisition setups
consisting of high-quality cameras and a set of light sources have been proposed [33,
12]. [10] presented the light stage and most recently successively extended it, being
able to acquire simple motion and dynamic reflectance fields of humans [6].

Most of the previous setups can acquire data for different and challenging tasks
as motion capture, scene reconstruction and reflectance estimation. However, there
is no system described in the literature yet that is able to provide high-resolution
temporally-coherent virtual actors for arbitrary real-world subjects.

4.2 Recording Studio

Our studio is designed to acquire high-quality surface models of human subjects as
well as image footage for measuring human motion, dynamic shape deformations,
and appearance. In the following sections, we describe in details the requirements
and solutions for each component of our studio: the studio room, the camera and
lighting system, and the full body laser scanner.

4.2.1 Studio Room

The studio is installed in a room of approximately 9 × 4.8 meters in size. Its spatial
dimensions are large enough to allow the scanning of subjects as well as recording
of dynamic scenes from a large number of viewpoints. The ceiling has a height
of approximately 4m. Along one of the shorter walls, an area of 2.5 × 4.8 meters
is separated as a control room of the studio and for our full body laser scanner,
Sect. 4.2.4. The walls and the floor can be covered with opaque black curtains and a
carpet, respectively, which enables us to minimize the effects of indirect illumination
in a scene. The recording area, the control room of our studio, and the laser scanner
are shown in Fig. 4.1.

4.2.2 Camera System

The cameras used in the studio need to provide high frame-rates, high resolution,
precise color reproduction, lossless data capture, and external synchronization,
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(a) (b)

(c)

Fig. 4.1 Our recording studio includes (a) the recording area, b the control room, and (c) the
laser scanner.

which ensures that the multiple streams are correctly registered in time. Our camera
system was ordered out-of-the box according to these specifications. The manufac-
turer [9] also provided us with a custom-made control software, Streams [29].

The system is composed of eight ImperxTM MDC1004 single chip CCD cam-
eras that feature a 1004x1004 CCD sensor with linear 12 bits-per-pixel resolution,
Fig. 4.2(a). The CCD uses a Bayer mosaic to record red, green, and blue chan-
nel information. The CCD sensor is connected to two controller chips. With both
controllers activated, the camera provides a sustained frame rate of 48 fps at full
resolution. However, in dual-mode the photometric responses of the sensors do not
comply and an intra-frame color adjustment step is necessary. With only one chip
activated, 25 fps at full resolution are feasible and no color balancing in the images
is required.

The cameras are linked to a control PC equipped with 8 high-speed frame grabber
boards. Each frame grabber is connected to a camera through a Camera LinkTM in-
terface. For maximal performance, each capture card is equipped with an on board
SCSI interface enabling direct streaming of image data to a RAID system. Eight
RAID systems are employed in parallel to enable real-time storage of the video
streams. The synchronization is performed via a trigger pulse that is broadcasted to
each capture card.
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(a) (b)

Fig. 4.2 Equipments: (a) Camera and (b) softlight used in the studio.

The cameras can be installed at arbitrary locations in the studio. For position-
ing them, telescope poles (ManfrottoTM Autopole [19]) with 3-degree-of-freedom
mounting brackets (ManfrottoTM Gear Head Junior [19]) are used that can be
jammed between the floor and the ceiling. In general, the cameras are placed in
an circular arrangement around the center of the scene and enable us to capture a
volume of approximately 3.5 × 3.5 × 3 meters.

4.2.3 Lighting System

The illumination of the studio is a fundamental issue for generating quality image
footage. In our studio, the lighting conditions are fully controllable. For example,
no exterior light can enter the recording area and the influence of indirect illumina-
tion is minimized by the black curtains and the carpet. Robust separation between
foreground and background is also essential, i.e. the amount of shadows cast on the
floor has to be minimized. Furthermore, the lighting system should produce a very
uniform lighting, giving the scene a natural appearance.

In our studio, we employ a generic lighting configuration using 8 NesyFlex 440
DI TM compact softlights [23] that are optimized for universal use in TV and video
studios, Fig. 4.2(b). Each light component contains 8 fluorescent day light tubes that
radiate even light at an wide angle. They illuminate objects in the center of the scene
from the top of the recording area and spread the light homogeneously downwards.
The system can be controlled as a single unit using the DMX TM controls. Addi-
tionally, each light can be rotated to fulfill specific requirements. By this end, the
lighting system prevents direct illumination into the camera lenses, which could lead
to glares. The illumination system produces a uniform diffuse lighting in the scene,
which avoids sharp shadows and unwanted highlights on the recorded subjects.

4.2.4 Full Body Laser Scanner

The geometric detail of the body of each recorded subject is captured by our Vitus
SmartTM full body laser scanner [32], Fig. 4.1(c). The device is compact, measuring
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2.1 × 1.9 × 2.8 meters, and could be easily integrated in our studio. The scanner
uses four columns which are mounted at an angle of approximately 90 degrees in
relation with the subject to be scanned. Each column hosts an eye-safe laser scanner
and two cameras that sit on a vertically moving gantry. The device employs a light-
stripe method to collect high-speed 3D measurements. The final scan comprises of
a 3D point cloud measured at an accuracy of 5 × 5 × 4 millimeters.

With a person standing on the scanner’s platform, the scanning instruments start
at the person’s head and move down to scan the entire body. The scanning device
is designed to handle different subjects and many different poses for a wide range
of applications. It is able to scan a cylindrical volume of approximately 2.1 × 0.9
meters.

The whole scanning process takes approximately 11s and is controlled by a soft-
ware running on a computer. This software, provided by Human Solutions [26], also
gives the operator the possibility to perform some simple editing operations on the
captured data.

4.3 Data Acquisition

Our recording studio efficiently acquires scanned models, camera attributes, and
multi-view image footage to be used by the projects described in this book. Our
acquisition pipeline can be divided into two stages: pre-recording and recording.
In the first stage, all necessary information needed to calibrate the cameras and
post-process the image data is captured. Afterwards, the actual recording session
takes place, where the laser-scanned model and the multi-view image footage are
acquired.

4.3.1 Pre-recording

In this stage, all necessary data required to post-process the multi-view video
footage and to calibrate the cameras is collected. The following steps are performed:

• Camera calibration
• Color calibration
• Background subtraction

4.3.1.1 Camera Calibration

For our applications, the internal and external parameters of each of the 8 cameras
have to be determined, Sect. 2.1. To this end, we first record two known objects
to be used by our calibration algorithms: a smaller calibration pattern positioned in
front of the camera, Fig. 4.3(a), and a large checkerboard positioned on the floor,
Fig. 4.3(b).

We start by using the Heikkila’s method [13] to calculate the intrinsic parameters
and undistort the calibration images accordingly. This algorithm jointly estimates
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(a) (b)

(c)

Fig. 4.3 Information acquired during the pre-recording session: (a) smaller calibration pattern
used for intrinsic parameter estimation; (b) large checkerboard on the floor used for extrinsic
parameter estimation; (c) color calibration pattern used for color adjustment.

intrinsic and extrinsic parameters from the images of our small calibration pattern
and models the lens aberrations more accurately by considering radial and tangential
lens distortions up to second order [16]. Afterwards, we also apply this information
to correct and undistort each recorded camera stream.

Thereafter, using the undistorted images, we estimate the external parameters by
means of the Tsai algorithm [31]. The corners of the checkerboard are automatically
detected [15] and an optimization procedure determines the extrinsic parameters
that minimize the reprojection error between the camera model’s prediction of the
pattern appearance and the actual images.

4.3.1.2 Color Calibration

Faithful color reproduction is ensured by white-balancing all cameras before the
recording session. However, even after this step the color response of the cameras
can be different, for example due to noise and slight physical differences in the built-
in camera components. In order to assure color-consistency across the cameras, we
record a large diffuse calibration pattern which consists of an array of 237 uniformly
colored squares with purely lambertian reflectance, Fig. 4.3(c).

We use the recorded images of this color pattern to estimate for each camera a tri-
linear transformation of the RGB color values in a least-squares sense. We typically
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perform relative photometric calibration. We define one camera to be the reference
camera and for each remaining one, a color transformation is computed such that
the color values of the pattern in the reference view are reproduced. At the end,
color-consistency across the cameras is assured by applying this transformation to
each recorded camera stream.

4.3.1.3 Background Subtraction

For the projects described in this book, the separation of the foreground subject
from the background is essential. Our studio design already simplifies this process
since the effects of external light on the scene and shadows cast on the walls are
minimized. In order to segment the multi-view image data, we employ the algorithm
described in Sect. 2.3.1 that robustly separates the moving human actor from the
background. This algorithm computes mean color and standard deviation for each
background pixel from a sequence of images without a foreground object, which is
recorded prior to each human performance. By this means, foreground pixels can be
identified by a large deviation of their color from the background statistics.

4.3.2 Recording

Our recording session consists of three steps. Before recording a set of perfor-
mances, the data needed for camera calibration and post-processing is acquired:
small and large checkerboard images, color pattern and background images. Then,
for each subject, we acquire a triangle mesh model with our Vitus SmartTM full body
laser scanner. Thereafter, the subject immediately moves to the nearby area where
his/her performance is recorded by our eight synchronized video cameras.

In general, before recording each sequence, we ask the person to initially strike
the same pose that he/she was scanned in. This simplifies the alignment process
between scanned model and recorded images.
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Chapter 5
Problem Statement and Preliminaries

This part reviews the steps involved in the traditional skeleton-based
character animation paradigm, and proposes two mesh-based
alternatives that simplify the conventional process.

In recent years, photo-realistic computer-generated animations of humans have be-
come the most important visual effect in motion pictures and computer games. In
order to obtain an authentic virtual actor, it is of great importance that he/she mimics
as closely as possible the motion of his/her real-world counterpart. Even the slight-
est unnaturalness would be instantaneously unmasked by the unforgiving eye of the
viewer and the illusion of seeing a real person would be compromised.

In order to generate virtual people, animators make use of a well-established but
often inflexible set of tools (see Sect. 5.1) that makes a high amount of manual
interaction unavoidable. First, the geometry of the human body is hand-crafted in a
modeling software or obtained from a laser scan of a real individual [7]. In a second
step, a kinematic skeleton model is implanted into the body by means of, at best,
a semi-automatic procedure [20]. In order to couple the skeleton with the surface
mesh, an appropriate representation of pose-dependent skin deformation has to be
found [25]. Finally, a description of body motion in terms of joint parameters of
the skeleton is required. It can either be designed in a computer or learned from a
real actor by means of motion capture [13, 27]. Although the interplay of all these
steps delivers animations of stunning naturalness, the whole process is very labor-
intensive and does not easily allow for the interchange of animation descriptions
between different virtual subjects.

In this part of the book, we present two versatile, fast and simple alternatives
that streamline the whole pipeline from laser-scanning to animation. Although our
approaches abandon the concept of a kinematic skeleton, they integrate into the
traditional animation workflow and enable animators to quickly produce convincing
animation results with minimal manual labor, while still allowing for control over
the production process.

The first approach, Chapter 6, is based on the Guided Poisson-based Deforma-
tion Method (Sect. 3.2.1) and the second one, Chapter 7, extends the first animation
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scheme by using the Guided Laplacian-based Deformation Method (Sect. 3.2.2).
In general, both algorithms expect as input a geometric model (scanned or hand-
crafted) in the form of a triangle mesh, and a description of the motion that the
model should perform. As a result, they animate the input model generating con-
vincing skinned body surfaces and also enabling simple motion retargeting, i.e.
they enable the animator to interchange motions between persons of even widely
different body proportions with no additional effort. Moreover, animations can be
generated at interactive frame rates and the animators have instantaneous feedback
when designing or modifying the animations. We demonstrate the performance of
the proposed methods by using marker-based and marker-less motion capture data.

The main contributions of this part of the book is the

• integration of a Poisson-based and a Laplacian-based mesh deformation tech-
nique with a motion capture system to create an efficient and easy-to-use alter-
native to the traditional skeleton-based character animation pipeline [3, 4, 5],

• and the development of an intuitive animation tool providing full control over
motion characteristics and deformation properties.

This chapter proceeds with a review of closely related work in Sect. 5.1. After-
wards, in Chapter 6 and 7, we describe the details of both mesh-based character
animation methods.

5.1 Related Work

The first step in human character animation is the acquisition of a human body
model comprising of a surface mesh and an underlying animation skeleton [11].
Surface geometry can either be hand-crafted or scanned from a real person [7].

The skeleton model can be either manually designed, inferred from marker tra-
jectories [23, 2] or inferred from shape-from-silhouette volumes [1]. Similarly, kine-
matic skeletons can be reconstructed from a set of range scans of humans [8] or by
fitting a template to body scans [9]. Recently, new methods are also able to extract
plausible human animation skeletons from a static surface mesh of a character by
using prior knowledge [10, 29].

Geometry and skeleton need to be connected such that the surface deforms re-
alistically with the body motion. A popular method serving this purpose is vertex
skinning [25] (see also Sect. 13.1). It represents position changes of individual ver-
tices as a weighted set of transformations associated with adjacent joints. Deforma-
tion models can also be created by interpolating a set of scans [6], by combining a
marker-based motion capture system with a shape-from silhouette method [28] or by
capturing and animating surface deformations using a commercial motion capture
system and approximately 350 markers [26].

The virtual human is animated by assigning motion parameters to the joints
in the skeleton. Common methods to generate such motion descriptions are
key-framing [14], physics-based animation [16] or optimization-based creation of
physically plausible movements [17]. However, the most authentic motion repre-
sentation is acquired through marker-based [13, 20] or marker-less motion capture
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systems [27]. Unfortunately, reusing motion capture data for subjects of different
body proportions is not trivial, and requires computationally expensive motion edit-
ing [18, 24] and motion retargeting techniques [19, 33].

In general, most current work on character animation is focused on improving
particular steps of the traditional pipeline such that animators can create realistic
results efficiently. Only a small number of people has been working on methods to
make the overall production process easier [12] and less dependent on the use of an
underlying skeleton [22].

On the other hand, as highly detailed 3D triangle meshes become more and more
accessible, there has been an increasing interest in devising techniques which can
work directly on these geometric representations without requiring the overhead of
intermediate pipelines such as the one mentioned above. The potential of mesh-
based deformation techniques for character animation has already been stated in
the literature. Using a complete set of correspondences between different synthetic
models, [31] can transfer the motion of one model to the other one. Following a sim-
ilar line of thinking, [32, 15] propose a mesh-based inverse kinematics framework
based on pose examples. [30] presents a multi-grid technique for efficient defor-
mation of large meshes and [21] presents a framework for performing constrained
mesh deformation using gradient domain techniques. Most recently, [34] proposes
a set of mesh-based operations to post-process mesh animations that unfortunately
requires a fundamental redesign of existing animation tools.

In the following chapters, we present two methods that are able to simplify the
traditional animation process [3, 4, 5]. Although they abandon the concept of a
kinematic skeleton, the approaches integrate into the traditional animation workflow
and enable animators to quickly produce convincing animation results. In contrast
to related methods, they provide a complete integration with a motion acquisition
system and provide an intuitive animation tool that gives full control over motion
characteristics and deformation properties.
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Chapter 6
Poisson-Based Skeleton-Less Character
Animation

This chapter presents an approach to efficiently generate high-quality
animations of human characters from input motion data. Using a
Poisson-based deformation method, as described in Sect. 3.2.1, the
proposed approach outputs character animations with realistic body
deformations, only requiring a minimum of manual interaction.

In order to generate photo-realistic animations of humans, animators make use of a
well-established but often inflexible set of tools that makes a high amount of manual
interaction unavoidable, Sect. 5.1. In this chapter, we describe a versatile, fast and
simple mesh-based alternative to animate human models that completely integrates
into the traditional animation workflow.

Our approach can be used to realistically animate models of humans without
relying on kinematic skeletons, which reduces the animator’s effort to a great extent.
Furthermore, it produces realistic pose-dependent body deformations and it solves
the motion transfer problem, i.e. it enables the animator to interchange motions
between persons of even widely different body proportions with no additional effort.

The main contributions of this chapter are

• the integration of a Poisson-based mesh deformation technique with a motion
capture system to create an efficient and simple alternative to the conventional
character animation pipeline [1, 2], and

• the development of an intuitive animation tool providing full control over motion
characteristics and deformation properties.

This chapter proceeds with an overview of our algorithm in Sect. 6.1, and the de-
scription of our simple interface prototype in Sect. 6.2. Thereafter, we demonstrate
that we can realistically animate human models using marker-based and marker-
less motion capture data, Sect. 6.3. Finally, results and conclusions are presented in
Sect. 6.4.

6.1 Overview

Our goal is to provide animators with a simple and fast method to directly apply
captured motion to human models, e. g. scanned models. The input to our method

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 45–54.
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Fig. 6.1 Illustration of the workflow of our system.

is a human body scan Mtri and motion data generated from real individuals using
optical motion estimation methods, Fig. 6.1. The first processing step normalizes
these sequences of key body poses by transforming them into a sequence of postures
of a simple triangle mesh model, henceforth termed template mesh. In Sect. 6.3.1
and 6.3.2 we exemplify that it is straightforward to generate such templates from
motion capture data.

By regarding motion transfer as a pure deformation problem, we can put aside all
difficulties related to the dissimilarities between the template and the input model,
as anatomical disparities or body proportions, and take advantage of their semantic
similarities, e.g. the fact that both mesh representations have knees and elbows. To
this end, we ask the user to specify a set of correspondence triangles between the
template and Mtri.

The motion of the template mesh from a reference pose, as shown in Fig 6.2(a),
into another pose (Fig 6.2(c)) is captured by the deformation of a small set of tri-
angles marked under the guidance of the user. Applying these deformations to the
corresponding triangles of Mtri brings it from its own reference pose, as shown in
Fig 6.2(b), into the deformed template’s pose, Fig 6.2(d). For this purpose, we first
align template and input models in a given reference pose. By subsequently apply-
ing the motion transfer procedure to all input frames, the motion from the moving
template mesh is correctly transfered to the input high-quality body model.

6.2 Prototype Interface

Our method does not require skeleton information or full correspondence between
the template and the input model. The motion transfer process is controlled by the
set of markers chosen by the user. We decided to resort to this interactive step since
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(a) (b) (c) (d)

Fig. 6.2 A template model (a) and a high-resolution body scan (b) in their respective reference
poses. The template in a pose obtained via motion capture (c) and its pose transferred to the
human scan (d). Reprinted from [2] c© 2007 IEEE.

Fig. 6.3 Prototype interface used in our system, featuring easy selection of correspondences
and instantaneous feedback. Reprinted from [1] c© 2007 IEEE.

there is no viable automatic approach that can identify body segments on meshes
standing in general poses.

Our easy and intuitive prototype interface allows access to both models at their
reference poses simultaneously, Fig. 6.3. An automatic alignment of the models is
performed upon loading the mesh files. When a triangle is selected on one model, a
corresponding triangle on the other one is highlighted. The artist can decide to keep
this correspondence or improve it manually. For cylindrically shaped body parts, we
require the user to specify a single correspondence triangle and we mark additional
triangles automatically by taking additional directions in the cross-sectional plane
and intersecting them with the mesh. For geometrically more complex body parts,
such as the lap or the shoulders, correspondences need to be specified by the user.



48 6 Poisson-Based Skeleton-Less Character Animation

Using our prototype interface, the user can verify instantaneously how the corre-
spondences will influence the deformation transfer process. By loading a template
mesh in a deformed pose, the input model Mtri can be deformed using the actual
selected correspondences. This enables the artist to decide on-the-fly if the corre-
spondences yield satisfactory results. Note that except from setting the correspon-
dences, our whole framework is fully automatic. The number of triangle correspon-
dences used in our animations ranges from 140 to 220, half of which is automatically
generated.

As the placement of the markers directly affects the pose-dependent surface de-
formation of the scanned mesh, the user does not have to tweak any weights as in the
commonly used skinning methods. The principle here is simple: for having a sharp
bend in the surface, the correspondences should be placed close to either side of the
joint, Fig. 6.4 (left). Increasing the distance of the markers from the joint allows for
a softer bending, Fig. 6.4 (right).

6.3 Animating Human Scans Using Motion Capture Data

Using motion capture data as the front-end to our framework, we create two intrigu-
ing applications: mesh-based character animation and video-driven animation.

6.3.1 Mesh-Based Character Animation

Marker-based tracking systems [3] provide the animator with motion descriptions
of unequaled accuracy and naturalness. Even subtle details in motion patterns are
faithfully captured. However, the high quality of the captured motion data comes at
the expense of many inflexibilities in their application. Firstly, motion parameters
cannot easily be reused with virtual persons that differ in skeletal proportions from
the captured individual. To make this possible, computationally expensive motion
retargeting algorithms have to be applied [5]. Secondly, motion capture systems only
deliver a description of human motion in terms of interconnected rigid bodies. The
non-rigid deformations of the skin and the soft-tissue surrounding the bones usually
have to be manually modeled, e.g. by means of vertex skinning [6].

Our approach is able to simplify this process by directly animating human body
scans with motion capture data. Paradoxically, despite discarding the use of a kine-
matic skeleton, it allows us to generate high-quality animations. The steps that have
to be taken to animate the input scan are very simple: first, using any standard anima-
tion software, like 3D Studio MaxTM, the input motion data, as shown in Fig. 6.5(a),
is transformed into a surface model in which the bones of the biped are represented
as triangle meshes, Fig. 6.5(b). Consequently, using our prototype interface, static
per-triangle correspondences between the triangulated biped and the input scanned
mesh are defined. Finally, the Guided Poisson-based mesh deformation approach,
as described in 3.2.1, realistically deforms the scanned model Mtri, mimicking the
motion of the animated template, Fig. 6.5(c).
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(a) (b)

Fig. 6.4 Influence of the markers’ placement on the deformation quality: marking correspon-
dence triangles (red dots) close to an (anatomical) joint creates a sharp bend in the skin
(left), while increasing the distance to the joint enables smoother bending (right). Reprinted
from [1] c© 2007 IEEE.

In order to use the deformation approach, the local transformations to be applied
to the selected triangles of Mtri need to be estimated. This is done by calculating
the transformation matrix Ri that brings the triangle tREF

i at the reference frame into
the configuration tt

i at frame t, i.e. using the Jacobian. Using as input Mtri and the
estimated transformations R, the deformation method is able to transfer the pose of
the template to the scanned model. At the end, since the deformation approach is
insensitive to translation, we also apply a global translation to M ′

tri to bring it to the
same location as the template model at the current frame.

We have applied our method to animate a male and a female scanned model. Input
motion capture data are taken from a database of motion files provided by Eyes,

(a) (b) (c)

Fig. 6.5 The set of input markers (a) are used to generate an intermediate biped model using
any standard animation software (b). By applying the Guided Poisson-based deformation
technique, the acquired motion is realistically transferred to the input human body scan (c).
Reprinted from [1] c© 2007 IEEE.
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Fig. 6.6 Subsequent frames generated by our system showing the female scan authentically
performing a soccer kick. Note the realistic protrusion of the chest when she blocks the ball,
as well as the original head motion. Reprinted from [1] c© 2007 IEEE.

Japan Co. Ltd. Fig. 6.6 shows several frames of an animation in which we made the
female model perform a soccer kick. The input is a motion capture file comprising
of 90 key body poses. The actress realistically blocks the ball, kicks it and scores.
Note that the animation nicely displays even subtle details like the protrusion of
the chest during blocking. The skin deformation around the knees and the elbows
is also authentically reproduced. Fig. 6.7 shows the male model performing boxing
punches and jumping. Note that despite the fact that the input motions stem from
persons with totally different anatomical dimensions, very natural animations are
generated.

6.3.2 Video-Driven Animation

For non-intrusively estimating motion parameters, the passive optical motion cap-
ture approach proposed in [4] is used. To this end, a moving subject is recorded by
eight static video cameras in our studio, Chapter 4. From the frame-synchronized
multi-view video (MVV) streams, the shape and the motion parameters of the hu-
man are estimated. To achieve this purpose, the template model shown in Fig. 6.2(a),
comprising of a kinematic skeleton and sixteen separate closed surface segments, is
fitted to each time step of video by means of silhouette-matching. The output of
the method conveniently represents the captured motion as a sequence in which the
template model subsequently strikes the estimated body poses.

This output format can be directly used as input to our pipeline. First, the anima-
tor specifies triangle correspondences between the template and the scanned model
Mtri at their reference poses. Thereafter, the mesh deformation scheme (Sect. 3.2.1)
makes the human scan mimic the motion that we have captured in video. As in
Sect. 6.3.1, local transformations R are calculated based on the deformation of
the selected triangles of the template model between the reference and the current
frame. The deformation method transfers the pose of the template to the scanned
mesh, and at the end, a global translation is applied to M ′

tri bringing it to the same
position as the template model at the current frame.
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Fig. 6.7 Male model boxing (left) and jumping (right). Note the realistic skin deformation of
the animated scanned model. Reprinted from [1] c© 2007 IEEE.

We demonstrate the performance of our video-driven animation system by an-
imating a female and a male scan with two different captured motion sequences.
The first sequence contains 156 frames and shows a female subject performing a
capoeira move. The second sequence is 330 frames long and shows a dancing male
subject. Fig. 6.8 shows a comparison between actual input video frames and human
scans striking similar poses. It illustrates that body poses recorded on video can be
faithfully transferred to models of arbitrary human subjects. Differences in body
shape and skeletal proportions can be neglected. These results also demonstrate that
our method provides animators with a tool to conveniently transfer motion extracted
from normal video streams onto human scans.

6.4 Results and Discussion

To demonstrate the potential of our framework, we conducted several experiments
with both marker-based and marker-less motion acquisition techniques. Since for
this project we did not have access to a full body laser scanner, we used the Cyber-
ware models provided with their original surface colors in most of our experiments:
a female model (264KΔ ) and a male model (294KΔ ). As shown in Fig. 6.6 and
Fig. 6.7, the models faithfully reproduce the acquired performances of professional
athletes. Marker-less motion acquisition enables us to perform video-driven anima-
tion. Both of our models in Fig. 6.8 authentically mimic the human performances
captured on video.

The results confirm that our method is capable of delivering visually convincing
character animation at a low interaction cost. The method is able to process large
data sets in the order of 200 to 300 KΔ in just seconds. For smaller models of 30 to
50 KΔ , the results are generated at 2-5 frames per second. All the experiments were
conducted on a single 3.2GHz notebook.

Our method can be seen as an enhancement to the artist’s traditional animation
workflow. In order to evaluate its performance, we conducted several experiments
asking unexperienced users to animate a character using both our animation frame-
work and a traditional animation software. A comparison of the resulting animations
is shown in Fig. 6.9. This further confirms that our system is able to generate results
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Fig. 6.8 Video-driven animation. Motion parameters are extracted from raw video footage
of human performances (top row). By this means, body poses of a video-taped individ-
ual can easily be mapped to body scans of other human subjects (bottom rows). Reprinted
from [2] c© 2007 IEEE.

comparable to professional animation packages, like Character Studio TM, without
requiring much effort. In the traditional animation pipeline, an unexperienced user
needs many hours to correctly adjust the skinning weights. However, in our system,
he/she is able to specify the correspondences quickly thanks to our prototype inter-
face. After less than one hour, the animations shown in Fig. 6.9(b) can be produced.
In fact, specifying correspondences is more intuitive to the user than working on
building envelopes during the skinning process. In addition, correspondences can
be tested instantaneously on our system, giving the user an adequate feedback.

As for any novel technique, our method still has some limitations. While our cur-
rent system can handle different motion capture data as input, it does not provide
intuitive key-framing capabilities. For extreme deformations, we also note that there
is generally some loss in volume due to the nature of our mesh deformation tech-
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(a)

(b)

Fig. 6.9 Direct comparison between a character animation generated by an animation soft-
ware package (a) and our system (b). Our method is able to provide the same visual quality,
while requiring less effort and time from unexperienced users. Reprinted from [1] c© 2007
IEEE.

nique, Sect. 3.2.1. Another limitation is that our system can not enforce positional
constraints. Although it is not possible to explicitly enforce positional constraints,
they can be implicitly specified by increasing the number of correspondences
associated with a triangle or a region. For instance, we can ensure stable feet place-
ment simply by marking a sufficient number of constraints on the feet. While allow-
ing for an easy and intuitive control over the animation result, a wrong placement
of correspondences can lead to unsatisfactory animation results, in the same way as
bad skinning weights do in the classical animation pipeline. However, during our
experiments, we could verify that bad correspondences can easily be detected and
corrected using the instantaneous feedback provided by our prototype interface. On
the other hand, correcting problems in the traditional animation pipeline needs a big
amount of time and experience.

Most recently, a variety of mesh deformation techniques have been described in
the literature, Sect. 3.1. The majority of these methods are conceptually related to
our algorithm and could also be used to enhance the animation quality and the speed
of our system. In the next chapter, we improve the performance of our animation
framework by using a Laplacian-based mesh deformation scheme (Sect. 3.2.2) in-
stead of a Poisson-based technique. This solves the translation insensibility problem
of the current system, enabling the specification of positional constraints. Moreover,
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it allows the user to generate animations using a smaller number of correspondences,
thus reducing the animator’s effort.

Nonetheless, the proposed method is a step towards simplifying the traditional,
not so straightforward acquisition-to-animation pipeline. It is easy and intuitive to
use, and does not require any training. By means of the same efficient methodology,
it simultaneously solves the animation, the surface deformation, and the motion
retargeting problem.
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Chapter 7
Laplacian-Based Skeleton-Less Character
Animation

This chapter extends the original mesh-based animation framework
described in the previous chapter. By using a Laplacian-based
scheme to guide the mesh deformation process, the improved system
described here allows for more accurate control producing anima-
tions from motion capture data.

In the previous chapter, we introduced a versatile, fast and simple approach to an-
imate characters from motion capture data. It uses a purely mesh-based animation
paradigm that realistically animates static meshes of arbitrary humans without re-
lying on kinematic skeletons. However, the previous approach does not allow the
animator to specify positional constraints. Although they can be implicitly enforced
by increasing the number of correspondences associated with a triangle, the lack of
positional constraints makes it hard to produce an animation, as the user needs to
specify more correspondences.

In this chapter, we extend the previous approach by employing a Laplacian-based
technique, as described in Sect. 3.2.2, to guide the motion transfer process. As a
result, our system is able to animate the human character taking into account rota-
tional and positional constraints set by the user. This enhances the performance of
the method, and makes it more robust against retargeting artifacts, e.g. feet sliding
on the floor.

The main contribution of this chapter is the

• integration of a Laplacian-based mesh deformation technique with a motion cap-
ture system to create a simpler alternative to the traditional character animation
pipeline [1].

The remainder of this chapter is structured as follows: Sect. 7.1 presents an
overview of our improved animation framework. Applications of our method us-
ing both marker-based and marker-less motion capture data are shown in Sect. 7.2.
Finally, results and conclusions are presented in Sect. 7.3.
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(a) (b) (c)

Fig. 7.1 (a) Template (used for marker-less data) and human models at their reference poses.
Colored spheres represent corresponding selected vertices. (b-c) Models in different poses.
Note how the human model is accurately deformed, mimicking the template model’s pose.
Reprinted from [1] c© 2007 IEEE.

7.1 Overview

As in Chapter 6, inputs to this method are a scanned mesh Mtri and a description
of the motion that the model should perform. To apply our framework, an input
motion description has to be converted into a moving template model, which can
either be a template triangle mesh or a template point cloud. After roughly aligning
template and scanned models at their reference poses, a small set of corresponding
vertices between the template and Mtri are specified. Thereafter, our Laplacian-
based mesh deformation technique is used to efficiently transfer the motion of the
template model to Mtri. The deformation method generates animations at interac-
tive frame rates, creates convincingly skinned body surfaces, and allows for simple
motion retargeting.

Through placement of markers, the characteristics of the motion, the surface
skinning, and the retargeting constraints are defined. Our graphical user interface,
adapted from Sect. 6.2, assists the animator in controlling marker placement. A
typical session consists of the following steps: first the user selects a vertex in the
template model. Since template and input model have been roughly aligned, the
system proposes a corresponding closest target vertex. Fortunately, we can compute
deformed mesh poses at interactive rates, and thus a new pose M ′

tri is shown instan-
taneously after setting each pairwise correspondence. Due to the immediate visual
feedback, it is easy for the user to interactively modify correspondences.

As the corresponding vertices will drive the Laplacian-based deformation
method, it is important that their choice captures as much as possible of the geo-
metric deformation. The principle to place the markers is simple: they should be
specified in areas where deformations are expected to happen, e.g. near anatomi-
cal joints. In addition, they can be specified in regions where the animator wants to
enforce detailed deformation, for example in the torso, or explicit positional con-
straints. With the assistance of our interactive application, even unexperienced users
quickly get a feeling of how to place markers. Each of the animations presented
in Sect. 7.3 were generated in less than 15 minutes. Typically, between 35 to 65
markers are sufficient to create realistic animations.



7.2 Animating Human Scans with Motion Capture Data 57

Fig. 7.2 Several frames showing the input human model performing soccer moves. The input
motion was captured by means of a marker-based optical motion capture system. Note the
lifelike non-rigid surface deformations automatically generated. Reprinted from [1] c© 2007
IEEE.

7.2 Animating Human Scans with Motion Capture Data

7.2.1 Mesh-Based Character Animation

Nowadays, skeletal motion data acquired with a marker-based optical system is
widely-used in animation production. It is thus one of our main motivations to de-
velop a method to easily apply these data to high-quality surface models, while
bypassing the drawbacks of the traditional skeletal animation. Nearly all motion
capture systems output a kinematic skeleton and a sequence of joint parameters. As
stated in Sect. 6.3.1, we first automatically transform this kinematic representation
into a moving template model using a standard animation software, like 3D Studio
MAXTM. Note that we do not generate another surface model, and that there are no
requirements at all concerning shape and connectivity of the template, apart from it
containing moving vertices.

Once the mesh template has been generated, local transformations R are calcu-
lated from the rotation of the selected vertices of the template between its reference
pose and its pose at time t, by means of a graph-based method. To this end, the se-
lected vertices on the template are considered nodes in a graph, and edges between
them are determined by constructing the extended minimal spanning tree [3]. For
each selected vertex, a local frame is generated by looking at its neighboring edges.
A local rotation for each vertex is estimated from the change of the local frame be-
tween reference time and time t, i.e. using the Jacobian. These rotations are then
assigned to the corresponding vertices of Mtri. Positional constraints pc are derived
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Fig. 7.3 Video-driven animation. Two comparisons between an input video frame and
two models striking the same pose. Although the models have different body dimension
with respect to the real human subject, the poses are reconstructed accurately. Reprinted
from [1] c© 2007 IEEE.

from the positions of the selected vertices of the template mesh at time t, and as-
signed to the corresponding vertices of Mtri. Using as inputs Mtri, R and pc, the
Guided Laplacian-based approach is applied to animate the scanned human model
over time.

We can even use the raw marker-trajectories output by the motion capture system
as input to our method, as opposed to in Chapter 6. However, please note that the
best positions of markers on the body for our purpose are different from the best
marker positions for skeletal motion estimation. Obviously, most publicly available
sequences have been captured with the latter application in mind, which makes it
necessary to build a template prior to feeding them to our algorithm.

We have animated several laser-scanned subjects with motion files provided by
Eyes Japan Co. Ltd. We generated convincingly moving characters, examples of
which are shown in Fig. 7.2. Motion retargeting is achieved by appropriately placing
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constraints. With synthetic data, we could also verify that raw marker trajectories are
a feasible input motion description.

7.2.2 Video-Driven Animation

Instead of explicitly-placed markings on the body, marker-less systems employ im-
age features to estimate motion parameters from video. Similar to Sect. 6.3.2, using
a silhouette-based marker-less motion capture system [2], the actor’s motion param-
eters are measured, using a template body model comprising a segmented surface
mesh and an underlying skeleton, from 8 multi-view video streams.

Since a mesh template is already used for tracking, we can employ the deforma-
tion scheme to straightforwardly map the captured motion to scans of other persons.
As in Sect. 7.2.1, positional constraints pc are assigned to vertices of Mtri from
the corresponding vertices of the template mesh at time t. Rotational constraints R
are derived from the movement of the selected markers of the template from the
reference frame to the current frame. By applying these constraints to the Guided
Laplacian-based approach, the scanned human model is animated over time. Fig. 7.3
shows screenshots of animations that are obtained by mapping non-intrusively cap-
tured human performances to laser-scans of different subjects.

7.3 Results and Discussion

The animated body meshes of male and female subjects, captured with a Cyber-
ware full-body scanner, exemplify the performance of our improved method. In
the marker-based setting, we generated results from 10 different motion sequences,
showing a variety of motions ranging from simple walking to soccer moves. The
sequences were typically between 100 and 300 frames long. Fig. 7.2 shows several
frames of different animations where the male model performs soccer moves. The
human model realistically performs the motion, while exhibiting lifelike non-rigid
surface deformations. Note that the fact that the scanned model has different dimen-
sions compared to the recorded human subject is not a problem for our algorithm.

Marker-less animation examples are shown in Fig. 7.3 and Fig. 7.4. Fig. 7.3
shows a comparison between actual input video frames and two models striking
similar poses. It illustrates that our method can accurately transfer poses captured
on video to virtual characters. Fig. 7.4 shows some frames of a captured dancing
sequence (330 frames) being mapped into a male model.

The quality of the results confirms that our animation framework is able to
simplify the traditional, not so straightforward skeletal acquisition-to-animation
pipeline. The framework described in this chapter is simple, versatile and enables
us to compute target poses for Mtri at an interactive frame rate of 5 fps for models
comprising of 10KΔ to 30KΔ . As in Chapter 6, this approach also requires manual
interaction. However, the main advantage over the previous one is the addition of
positional constraints. This allows the user to animate a character using less corre-
spondences and makes the system more robust against retargeting artifacts. More-
over, the improved framework does not require a sequence of template models and



60 7 Laplacian-Based Skeleton-Less Character Animation

Fig. 7.4 Example of a simple virtual environment using the male model. Some frames of
the animated dancing sequence, captured from the performance of a real actor, are shown.
Reprinted from [1] c© 2007 IEEE.

it is able to create character animations using only the raw marker positions. By
this means, animation production is simplified even further, as animations can be
generated interactively during the motion capture process.

Our current method still presents some limitations regarding loss in volume dur-
ing extreme deformations. However, this can be corrected by using advanced surface
or volumetric mesh deformation methods as shown in [4, 5, 6]. Nonetheless, in this
part of the book we describe an efficient methodology to directly animate characters
from motion data, simultaneously solving the animation, the surface deformation,
and the motion retargeting problem.
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Part III
Towards Performance Capture Using

Deformable Mesh Tracking



Chapter 8
Problem Statement and Preliminaries

This part of the book first reviews the most relevant work on motion
capture, scene reconstruction, and 3D Video. Thereafter, it describes
three algorithms to passively capture the performance of human
actors, and presents a system to generate high-quality 3D Videos.

Nowadays, stepping directly from a captured real-world sequence to the correspond-
ing realistic moving character is still challenging. Since marker-based and marker-
free motion capture systems measure the motion in terms of a kinematic skeleton,
they have to be combined with other scanning technologies to capture the time-
varying shape of the human body surface [12, 83, 72]. However, dealing with peo-
ple wearing arbitrary clothing from only video streams is still not possible. In this
part of the book, we propose three solutions to bridge this gap, enabling the di-
rect animation of a high-quality static human scan from unaltered video footage.
The algorithms presented in this part of the book jointly capture motion and time-
varying shape detail even of people wearing wide apparel, while preserving a spatio-
temporally coherent geometry over time. By being completely passive, they also
enable us to record the subject’s appearance, which can then be used to display the
recorded actor from arbitrary viewpoints.

The proposed methods achieve a high level of flexibility and versatility by ex-
plicitly abandoning any traditional skeletal motion parameterization, and by posing
performance capture as deformation capture. As a result, they produce a rich dy-
namic scene representation that can be easily made available to and modified by
animators, which enables new applications in motion capture, computer animation
and 3D Video.

To summarize, this part of the book presents the following contributions:

• a method to fully-automatically capture motion and time-varying deforma-
tion of people by combining optical flow and a fast Laplacian-based tracking
scheme [11];

• a simple and robust method to automatically identify and track features on a
moving arbitrary subject over time [10];

• an efficient approach to directly and realistically animate a static body scan from
sparse marker trajectories [10];

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 65–73.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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• a dense performance capture technique that reconstructs motion, time-varying
geometry, and texture of actors performing fast and complex motions [7];

• a system to render high-quality 3D Videos of captured human performances [7].

This chapter proceeds with a review of closely related work in Sect. 8.1. There-
after, in Chapters 9, 10, and 11, we describe the details of three performance capture
methods. Finally, Chapter 12 presents a system to generate high-quality 3D Videos.

8.1 Related Work

We define performance capture as the full process of passively recording motion,
dynamic geometry, and dynamic surface appearance of actors from multi-view
video. Therefore, the work presented in this part of the book jointly solves a va-
riety of algorithmic subproblems, and extends previous work in the fields of human
motion capture, dynamic scene reconstruction, and 3D Video.

8.1.1 Human Motion Capture

Optical motion capture systems are the workhorses in many game and movie pro-
duction companies for measuring motion of real performers [18]. Optical markings,
which are either made of a retroreflective material or LEDs are placed on the body
of a tracked subject and several high-frame-rate cameras are used to record the mov-
ing person. The locations of the markers in the video streams are tracked and their
3D trajectories over time are reconstructed by means of optical triangulation [5].
Thereafter, a kinematic skeleton is matched to the marker trajectories to parameter-
ize the captured motion in terms of joint angles [50]. Although many commercial
marker-based capturing systems are available, e.g. [1, 2, 74, 3, 4, 5], that deliver
highly accurate motion data, the application of marker-based systems is still time-
consuming, see Chapter 5. Furthermore, the captured individuals typically have to
wear special body suits, and the use of markers does not allow the video streams to
be employed for further processing, e.g. texture reconstruction.

Marker-less motion capture approaches are designed to overcome some re-
strictions of marker-based techniques and enable performance recording without
optical scene modification [67, 68, 76]. A kinematic body model, typically con-
sisting of a linked kinematic chain of bones and interconnecting joints, can be
combined with a simple geometric primitive to model the physical outline of the
human subject, enabling its motion estimation. Primitives like cylinders [88], stick
figures [56], patches [53], cones [45], boxes [63], scaled prismatics [26], ellip-
soids [30, 65] and superquadrics [43, 52, 90] can be used. Implicit surface models
based on metaballs are also feasible [75]. Recently, more realistic models based on
polygon meshes [25, 91, 64] and high-resolution scanned models [31, 15, 42] have
also been employed.

In [71], an analysis-by-synthesis framework has been proposed that searches the
space of possible body configurations, synthesizes model poses, and compares them
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to features in the image plane. By this means, the misalignment between these
features, such as silhouettes [75, 25, 8], and the corresponding features of the
projected model, drives a pose estimation and refinement process [54, 59, 46]. An-
other category of approaches uses optical flow constraints [22, 23], appearance mod-
els [98, 14], edges [90, 36], textured-models [41], depth constraints [32], inverse
kinematics [106] and conformal geometric algebra [80] to drive the pose estimation
procedure. Alternatively, divide and conquer methods using silhouettes [66], con-
straint propagation methods [27], and physics-based approaches [51, 34] have also
been developed.

In contrast to the methods based on local [25, 29, 78, 70] or global [31] opti-
mization, recently, the application of filtering approaches in the context of human
motion capture has become very popular. If the model dynamics can be described
by a linear model, a Kalman Filter can be used for tracking [73, 21, 65]. Assuming a
non-linear dynamic model and Gaussian noise, particle filter approaches can be also
employed [35, 88, 58, 37, 87, 100, 105]. Moreover, the combination of optimization
and filtering techniques for tracking sophisticated 3D body models has also been
demonstrated in several other publications [90, 20].

Recent systems are also based on learning approaches, where additional prior
knowledge is taken into account during human motion estimation. This includes
the use of prior poses or patterns from a motion database [88, 97, 79], tracking-by-
detection approaches [84, 57, 69], or approaches that learn a map between image
and pose spaces [47, 6, 55, 89].

Alternatively, instead of working with image features, kinematic body models
can be fitted to dynamic 3D scene models that are reconstructed from multiple sil-
houette views [95, 28, 9].

8.1.2 Dynamic Scene Reconstruction

Motion capture systems [18, 50] take into account the subject’s underlying kine-
matic structure to simplify the motion estimation process. However, the use of a
skeleton structure restricts such methods to capture only articulated rigid body mo-
tions. Non-rigid surface deformations due to apparel or skin are not captured. Some
approaches have been described in the literature aiming at solving this problem by
using hundreds of optical markings [72], by jointly using a motion capture sys-
tem and laser range scans of humans [12, 13] or by jointly employing a marker-
based motion capture method and multi-view silhouette matching [83]. Although
these approaches produce highly detailed deformable bodies, their commitment to
a marker-based motion capture system makes it hard to use them for applications
where interference in the scene is not allowed, e.g. 3D Video. Another limitation
is the use of a priori knowledge about the subject, which makes generalization to
animals or other objects difficult.

Marker-less motion capture approaches [76] are more flexible than intrusive
methods. However, it is still difficult for them to achieve the same level of
accuracy and the same application range. Furthermore, since most approaches em-
ploy kinematic body models, they cannot capture the motion and detailed shape of
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people in loose everyday apparel. Some methods try to capture more detailed body
deformations, in addition to skeletal joint parameters, by adapting the models closer
to the observed silhouettes [83, 15] or by jointly using silhouettes and cast shad-
ows [16]. However, these algorithms require the subjects to wear tight clothes. Only
few approaches, such as the work by [81], aim at capturing humans wearing more
general attire, e.g. by jointly relying on kinematic body and cloth models.

Alternatively, shape-from-silhouette algorithms [44], multi-view stereo ap-
proaches [107], methods combining silhouette and stereo constraints [39, 40], and
data-driven techniques [102, 38] can be used to reconstruct dynamic scene geome-
try. To obtain good quality results, however, many cameras are needed and it is hard
for these algorithms to generate connectivity-preserving dynamic mesh models [92].

Some passive deformable model tracking methods extract 3D correspondences
from images to track simple deformable objects [33], cloth [77], and surface defor-
mations of tightly dressed humans [75, 8]. Statistical models have also shown their
potential to track confined deformable surface patches [96] and moving hands [49].
Researchers have also used physics-based shape models to track garment [82] or
simple articulated humans [73, 62, 24]. Unfortunately, none of these methods is able
to track arbitrarily dressed people completely passively. It may also be difficult to
apply them for tracking a human wearing different garments, since the specification
of material parameters is non-trivial.

Recently, new animation design [19], animation editing [104], animation capture
methods [17], and approaches to deform mesh-models into active scanner data [94]
or visual hulls [85] have been developed. In another line of research, methods that
jointly perform model generation and deformation capture from scanner data [99]
have also been proposed. All these methods are no longer based on skeletal shape
and motion parameterizations, but rely on surface models and general shape defor-
mation approaches. Similar to these previous approaches, the performance capture
methods proposed in this book follow this research direction. Although the explicit
abandonment of kinematic parameterizations makes performance capture a harder
problem, it bears the striking advantage that it enables capturing both rigidly and
non-rigidly deforming surfaces with the same underlying technology.

8.1.3 3D Video

Research in 3D Video, or free-viewpoint video, aims at developing methods for
photo-realistic, real-time rendering of previously captured real-world scenes. The
goal is to give the user the freedom to interactively reconstruct real-world scenes
from new synthetic camera views never seen by any real camera.

Early research that paved the way for free-viewpoint video was presented in
the field of image-based rendering [86]. Shape-from-silhouette methods reconstruct
rather coarse approximate 3D video geometry by intersecting multi-view silhouette
cones. Examples are image-based [61, 103] or polyhedral visual hull methods [60],
as well as approaches performing point-based reconstruction [48].

Despite their computational efficiency, the moderate quality of the textured
coarse scene reconstructions often falls short of production standards in the movie
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and game industry. To boost 3D video quality, researchers experimented with multi-
view stereo [107], multi-view stereo with active illumination [101], combinations
of stereo and shape-from-silhouette [93], or model-based free-viewpoint video cap-
ture [25, 8]. However, the first three categories of approaches do not deliver spatio-
temporally coherent geometry or 360 degree shape models, which are both essential
prerequisites for animation post-processing. At the same time, it is extremely chal-
lenging for previous kinematic model-based techniques to capture performers in
general clothing.

In contrast, by combining the captured detailed dynamic scene representations
with a projective texture method, a system to render high-quality 3D Videos is de-
signed, Chapter 12, enabling convincing renditions of human subjects from arbitrary
synthetic viewpoints.
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65. Mikić, I., Triverdi, M., Hunter, E., Cosman, P.: Articulated body posture estimation
from multicamera voxel data. In: Proc. of CVPR, vol. 1, p. 455 (2001)

66. Mittal, A., Zhao, L., Davism, L.S.: Human body pose estimation using silhouette shape
analysis. In: Proc. of AVSS, p. 263 (2003)

67. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion cap-
ture. CVIU 81(3), 231–268 (2001)
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Chapter 9
Video-Based Tracking of Scanned Humans

In this chapter, we propose our first performance capture algorithm.
By combining an image-based 3D correspondence estimation al-
gorithm and a Guided Laplacian-based mesh deformation scheme
(Sect. 3.2.2), our system captures the performance of a moving sub-
ject from multiple video streams, while preserving the connectivity of
the underlying mesh structure over time.

Nowadays, reconstructing time-varying models of real-world human actors from
multi-view video is still challenging. As presented in Sect. 8.1, optical marker-based
motion capture systems are inappropriate for applications where interference with
the scene is not allowed, such as 3D Video. Moreover, since most marker-less mo-
tion capture methods proposed so far are based on a kinematic skeleton structure,
capturing people wearing anything more general then skin-tight clothing is difficult.

In contrast, in this chapter, we propose a flexible performance capture algorithm
to reconstruct the motion and the deforming geometry of a recorded subject, even
when he/she is wearing arbitrary clothing, including a wide t-shirt, a skirt, and a ki-
mono. In addition, our algorithm delivers a triangle mesh representation that main-
tains its connectivity over time. Our method employs a high-quality laser-scan of
the tracked subject as underlying scene representation, and uses an optical flow-
based 3D correspondence estimation method to guide the deformations of the model
over time, such that it follows the motion of the actor in the input multi-view video
streams.

The main contribution of this chapter is

• a complete framework to accurately and automatically track the motion and the
time-varying non-rigid surface deformation of people wearing everyday apparel
from a handful of multi-view video streams [1].

The remainder of this chapter is structured as follows: Sect. 9.1 describes the
details of our performance capture technique. Afterwards, experiments and results
with both synthetic and captured real-world data are presented in Sect. 9.2.

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 75–86.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 9.1 Overview of our first performance capture framework. Given a laser-scan of a person
and a multi-view video sequence showing her motion, the method deforms the scan in the
same way as its real-world counterpart in the video streams. Reprinted from [1] c© 2007
IEEE.

9.1 Framework

An overview of our performance capture technique is shown in Fig. 9.1. The input
comprises of a static laser-scanned triangle mesh Mtri of the moving subject, and a
multi-view video (MVV) sequence that shows the person moving arbitrarily. After
data acquisition, we first align the laser scan to the pose of the person in the first
time step of video, Sect. 9.1.1. Our framework comprises of two different tracking
procedures, step A and step B, that are subsequently applied. In step A, we apply
an iterative 3D flow-based deformation scheme to extract the motion information of
each vertex over time from the images, Sect. 9.1.2. The results of step A quickly
deteriorate due to accumulation of correspondence estimation errors. Nonetheless,
they give us the possibility to automatically identify N marker vertices that can be
tracked reliably, Sect. 9.1.3. Tracking step B, Sect. 9.1.4, is more robust against flow
errors since it implicitly enforces structural integrity of the underlying mesh. It uses
the moving marker vertices as deformation constraints to drive a Laplacian-based
deformation scheme that makes all vertices correctly follow the motion of the actor
in all video frames.

9.1.1 Acquisition and Initial Alignment

For each subject, we acquire the model and several multi-view video sequences in
our studio, Chapter 4. After capturing the triangle mesh Mtri, the subject imme-
diately moves to the nearby area where he/she is recorded with our synchronized
video cameras. After acquiring the sequence, silhouette images are calculated via
color-based background subtraction, Sect. 2.3.1.

In an initial alignment, we register the scanned mesh with the pose of the person
in the first time step of video. To this end, he/she initially strikes the same pose
that he/she was scanned in. By means of an ICP-like registration the mesh is first
coarsely aligned to a shape-from-silhouette reconstruction of the person. Thereafter,
we run our flow-based Laplacian deformation scheme (Sect. 3.2.2) to correct for
subtle non-rigid pose differences.
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Fig. 9.2 The workflows of tracking steps A and B are very similar: Arabic numerals indicate
the workflow specific to step A as it is described in Sect. 9.1.2, whereas Roman numerals
denote step B which is detailed in Sect. 9.1.4. Reprinted from [1] c© 2007 IEEE.

9.1.2 Step A: Purely Flow-Driven Tracking

After initial alignment, we iteratively deform each individual vertex of the mesh
Mtri based on 3D flow fields that have been reconstructed from the multi-view im-
ages. As none structural information about the underlying shape of the model is
considered, each vertex moves individually without considering the motion of its
neighbors. This makes this simple procedure not robust against errors in the 3D
flow field and leads to accumulation of correspondence estimation errors over time.
However, this simple step still allows us to deduce valuable motion information
about certain vertices on the surface which we can capitalize on in step B, where
structural information about the underlying model is used to improve the tracking.
Using subsequent time steps t and t + 1, our purely flow-driven tracking approach
consists of the following steps (see Fig. 9.2):

1. Projectively texture the model using the images I0
t · · · IK−1

t recorded with the K
cameras at time step t and blend them according to the weights described in
Sect. 12.1. From now on, for all deformation iterations between t and t + 1, the
texture coordinates are fixed.

2. Generate K temporary images T 0
t · · ·T K−1

t by projecting the textured model back
into all K camera views.

3. Calculate K 2D optical flow fields ok(T k
t , Ik

t+1) between image T k
t and Ik

t+1 with
k = {0 · · ·K − 1}.

4. Given the model, calibrated cameras, and the optical flow fields for all camera
views, we can compute the 3D motion field, also known as the scene flow, by
solving a linear system for each vertex vi that is visible from at least two camera
views, Sect. 2.3.3. The generated 3D flow field f(vi) = (xi,yi,zi) is parameterized
over the mesh’s surface, and it describes the displacement by which vi should
move from its current position.
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5. Filter the 3D motion field f(·) to remove noise and outliers. During the filtering
process, the 3D flow vectors for all vertices are first classified as valid or invalid
according to a silhouette-consistency criterion: f(·) is valid if the position of vi

after displacement projects inside the silhouette images for all camera views and
it is invalid otherwise. Thereafter, a Gaussian low-pass kernel is applied over the
entire flow field. All invalid displacements f(·) are set to zero.

6. Using the filtered version of f(·), update the model by moving its vertices ac-
cording to the computed displacements. Add the displacements f(·) to the ac-
cumulated displacement field dACCUM(·) according to the rule: dACCUM(vi) =
dACCUM(vi) + f(vi). dACCUM(·) describes the complete displacement of all
vertices from captured time step t to the current intermediate position.

7. Iterate from step 2 until the overlap error Eov(t +1) between the rendered model
silhouettes (see Fig. 9.2) and the video-image silhouettes at time t +1 in all cam-
era views is below TROV. Eov(t + 1) is efficiently implemented on the GPU as a
pixel-wise XOR [4].

8. Update the complete motion field d(t,vi), which describes the displacement
of each vertex vi from time step 0 to t, according to d(t,vi) = d(t − 1,vi) +
dACCUM(vi).

The mesh Mtri is tracked over the whole sequence by applying the previously de-
scribed steps to all pairs of consequent time steps. As a result, a complete mo-
tion field d(t,vi) is generated for each vertex vi that describes its displacement
over time.

Since our scheme calculates 3D displacements without taking into account a
priori information about the shape of the model, deformation errors accumulate
over time. Step B solves this problem by explicitly enforcing structural properties
of Mtri during tracking. To this end, the model is deformed based on constraints
derived from reliably tracked marker vertices. These vertices are automatically se-
lected from the results of step A based on the method described in the following
section.

9.1.3 Automatic Marker Selection

Based on the deformation results of step A, our approach selects N marker vertices
of the model that were accurately tracked over time. To this end, we first choose L
candidate vertices for markers that are regularly distributed over the model’s sur-
face, Fig. 9.3(a). To find these candidates, we segment the surface of the mesh by
means of a curvature-based segmentation approach [8]. This algorithm creates sur-
face patches with similar numbers of vertices whose boundaries do not cross impor-
tant shape features. In each region, the vertex located nearest to the center of gravity
is selected as a candidate.

A candidate vi is considered a marker vertex if it has a low error according to
the two spatio-temporal selection criteria tsc(·) and mov(·). tsc(·) penalizes marker
candidates that do not project into the silhouettes in all camera views and at all
time steps. mov(·) penalizes candidates whose motions are not consistent with the
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Fig. 9.3 (a) Segmented mesh Mtri and marker candidates (Sect. 9.1.3); (b) Graph connecting
marker vertices; (c) Rotation for each mi calculated according to the change in its local frame
from time 0 to t; (d-e) Model is reconstructed subject to constraints derived from the motion
of the markers. Reprinted from [1] c© 2007 IEEE.

average motion of all vertices in the model. This way, we can prevent the placement
of constraints in surface areas for which the flow estimates might be inaccurate. The
two functions are defined as follows:

tsc(vi) =
1

NF ∗ K

NF

∑
t=0

K

∑
k=0

(1 − PROJk
sil(pi + d(t,vi), t)) (9.1)

mov(vi) =
1

NF

NF

∑
t=0

(‖d(t,vi)− 1
NV

NV

∑
j=0

d(t,v j)‖) (9.2)

NF is the number of frames in the sequence, NV is the number of vertices in the
model, and pi is the position of vi at the first time step. PROJk

sil(x, t) is a function
that evaluates to 1 if a 3D point x projects inside the silhouette image of camera view
k at time step t, and it is 0 otherwise. A candidate vi is accepted as a marker vertex if
tsc(vi) < TRTSC and mov(vi) < TRMOV. Appropriate thresholds TRTSC and TRMOV

are found through experiments. The index i of each marker vi is then stored in
the set Q.
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9.1.4 Step B: Flow-Driven Laplacian Tracking

In step B, we extract rotation and translation constraints from the motion of the N
marker vertices to drive a Guided Laplacian deformation approach, Sect. 3.2.2. By
this means we can extract novel motion fields d(t,vi) for each vertex that make the
model correctly move and deform like the recorded individual. The individual steps
of the Laplacian tracking scheme are very similar to step A (Fig. 9.2), but differ in
the details of the deformation procedure. For two subsequent time steps t and t + 1,
tracking works as follows:

I-V are identical to steps 1-5 in Sect. 9.1.2.
VI From the motion of each marker vertex mi=vi, with i ∈ Q, relative to the default

position, a set of rotation and translation constraints is computed. Local coordi-
nate frames for each mi are derived from a graph connecting the markers. Each
marker corresponds to a node in the graph. Edges are constructed by building
an extended minimal spanning tree between them using geodesics as distance
measure [5], Fig. 9.3(b).

VII For each marker mi, a local rotation Ri is estimated from the change of its
local frame between its reference orientation at t = 0 and its current orientation,
Fig. 9.3(c).

VIII Thereafter, the model M ′
tri in its new target pose is reconstructed by applying

the deformation method described in Sect. 3.2.2, subject to position constraints
pc, derived from the position of the markers m, and the calculated rotation con-
straints R = q ·mi, Fig. 9.3(d-e).

IX Update the accumulated displacement field for all vertices dACCUM(·) accord-
ing to the rule: dACCUM(vi) = pREC

i − pi −d(t −1,mi), where pREC
i is the recon-

structed vertex position for vi.
X Iterate from step II until the overlap error Eov(t + 1) between rendered model

silhouettes and video-image silhouettes in all cameras at t +1 is below a threshold
TROV.

XI Update the complete motion field d(t,vi) by d(t,vi) = d(t −1,vi)+dACCUM(vi).

By applying this algorithm to all subsequent time steps we can track the model Mtri

over the whole video sequence. The Laplacian scheme reconstructs the mesh in its
new pose in a way that it preserves the differential surface properties of the original
scan. Due to this implicit shape regularization, our tracking approach in step B is
robust against inaccurate flow estimates and deforms the mesh in accordance to its
real-world counterpart in the video streams. Thanks to the guided Laplacian-based
scheme, details and features of the mesh are preserved. The resulting scanned model
is correctly reconstructed at all frames of the input video sequence and rigid and
non-rigid surface deformations are captured, Sect. 9.2.

9.2 Results and Discussion

Our framework has been tested on several synthetic and captured real-world data
sets. Synthetic sequences enable us to compare our results against the ground truth.
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Fig. 9.4 Three different optical flow methods have been tested with our framework. The aver-
age vertex position errors for each frame relative to the ground truth are plotted in this figure.
The method by Brox et al. (Sect. 2.3.2) (red line) shows the best performance. Reprinted
from [1] c© 2007 IEEE.

They were generated by animating a textured scan of a woman (26K	) provided by
CyberwareTM (Fig. 9.1) with publicly available motion capture files showing soccer
moves and a simple walk. Output streams were rendered into eight virtual cameras
(1004x1004 pixels, 25 fps) that were placed in a circular arrangement like in our real
studio, Chapter 4. Gaussian noise was purposefully added to the images to mimic
the characteristics of our real cameras. We ran a series of experiments to evaluate the
performance of different algorithmic alternatives and to decide on the best optical
flow estimation scheme for our purpose.

The latter question was answered by our first experiment. To test a representative
set of alternative flow algorithms, we compared the results obtained by using our
complete tracking framework (steps A and B) in conjunction with the local Lukas
Kanade method [6] (LK), the dense optical flow method by Black et al. [2] (BA), and
the warping-based method for dense optical flow by Brox et al. [3] (BR), Sect. 2.3.2.
The plot in Fig. 9.4 shows the average position errors between ground truth and
tracking results for each frame of a walking sequence. By using the local Lukas
Kanade method, we are unable to track the mesh and the error constantly increases
over time. The error plot for BA is much better, but it is clearly outperformed by BR.
The positional inaccuracy obtained with BR never exceeds 4 cm and even decreases
after a peak in the middle. Note that the synthetic model (Fig. 9.1) is textured with
very uniform colors which makes optical flow computation extremely hard. Even on
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Fig. 9.5 Average tracking error for all time steps of the synthetic walking sequence obtained
with different mesh tracking alternatives. The pipeline we propose (ST-AB) clearly produces
the best results. Reprinted from [1] c© 2007 IEEE.

such difficult data, BR tracks the mesh reliably, and thus the method by Brox et al.
is our method of choice for flow estimation.

In a second experiment, we compared the different deformation alternatives,
namely deformation along the unfiltered flow (RAWFL), deformation according to
step A only (ST-A), and deformation with our complete pipeline (ST-AB). Fig. 9.5
plots the average vertex position error against the frame number. Using RAWFL, the
measurement error grows almost exponentially. Tracking with a filtered flow field
leads to significantly better results, but the absolute inaccuracy is still comparably
high. In contrast, our complete pipeline leads to a very low peak position error of
3.5 cm that even decreases over time.

Table 9.1 summarizes the results that we obtained by assessing different combi-
nations of mesh tracking and flow computation methods. The column TIME contains
the time needed on a Pentium IV with 3GHz to compute the deformation from one
video time step t to the next one t +1. We also analyzed the average volume change
over the whole sequence, VOLCHG, in order to get a numerical indicator for un-
reasonable deformations. The preservation of mesh quality is analyzed by looking
at the average distortion of the triangles, MQLT. It is computed by averaging the
per-triangle Frobenius norm over the mesh and over time [7]. This norm is 0 for an
equilateral triangle and approaches infinity with increasing degeneracy. Finally, the
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Table 9.1 Different algorithmic alternatives are compared in terms of run time, volume
change (VOLCHG), mesh quality (MQLT), and position error (ERROR). Our proposed
pipeline with the dense optical flow method by Brox et al. (ST-AB/BR) leads to the best
results. Reprinted from [1] c© 2007 IEEE.

METHOD TIME VOLCHG MQLT ERROR

RAWFL 109s 17.65% 0.46 98.66mm
ST-A 111s 4.97% 0.30 49.39mm

BR / ST-AB 111s 2.79% 0.035 26.45mm
BA 426s 2.77% 0.029 35.28mm
LK 89s 10.73% 1.72 76.24mm

column labeled ERROR contains the average of the position error over all vertices
and time steps.

The run times of the first three alternatives are almost identical since 109 s have
to be spent on the calculation of the eight megapixel optical flow fields. Even in
our complete pipeline, the deformation itself runs at almost interactive frame rates
since the involved linear systems can be solved quickly. As expected, the tracking
error is highest if one deforms Mtri using the unfiltered flow, RAWFL. Furthermore,
the mesh distortion is fairly high and the volume change rises to implausible val-
ues. The best overall performance is achieved when we use our complete pipeline
ST-AB/BR. Here, the position error is lowest, the volume change is in the range of
normal non-rigid body deformations, and the triangles remain in nice shape. Al-
though the alternative BA produces a fairly low triangle distortion, its run time is
four times slower than the best alternative and the resulting positional accuracy is
almost 1 cm lower. LK is fastest, but leads to bad results according to all other
criteria. Our tests thus confirm that the complete tracking pipeline in combination
with a high-quality dense flow method can reliably track human motion from raw
unmodified video streams.

For our tests with real data we captured video footage and body models for dif-
ferent male and female test subjects using the setup described in Chapter. 4. The
captured video sequences are between 300 and 600 frames long and show a vari-
ety of different clothing styles, including normal everyday apparel and a traditional
Japanese kimono. Many different motions have been captured ranging from simple
walking to gymnastic moves.

Fig. 9.6 shows several side-by-side comparisons between input video frames and
recovered mesh poses. The algorithm reliably recovers the pose and surface de-
formation for the male subject who wears comparably wide apparel. This is also
confirmed by the very precise overlap between the reprojected model and the input
image silhouettes. Our algorithm can even capture the motion and the cloth defor-
mation for a woman wearing a kimono, Fig. 9.6 and Fig. 9.7. Since the limbs are
completely occluded, this would not have been possible with a normal motion cap-
ture approach.

The results show that our purely passive performance capture approach can auto-
matically capture both pose and surface deformation of human actors. It illustrates
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Fig. 9.6 Side-by-side comparisons between an input video frame and the pose of the laser
scan that our approach reconstructed. The poses of the persons and even the deformations
of complex apparel, like the kimono, are faithfully reproduced. Reprinted from [1] c© 2007
IEEE.

that a skeleton-less algorithm is capable of tracking even complex deformations of
different materials by means of the same framework. Our system neither requires
any segmentation of the model into parts, e.g. clothing and body, nor does it expect
the specification of explicit material parameters as they are often used in garment
motion tracking. Both of this would be very difficult for a human wearing different
kinds of fabrics. The combination of an a priori model, a fast Laplacian deforma-
tion scheme, and a 3D flow-based correspondence estimation method enables us to
capture complex shape deformations from only a few cameras. As an additional ben-
efit, our method preserves the mesh’s connectivity which is particularly important
for model-based 3D Video applications, Chapter 12.

Nonetheless, our algorithm is subject to a few limitations. Currently, our Guided
Laplacian-based scheme cannot handle volume constraints. In some situations such
a constraint may prevent incorrect mesh deformations and thus compensate the ef-
fect of incorrect flow estimates. However, for some types of apparel, such as a
long skirt or our kimono, a volume constraint may even prevent correct tracking.
From this point of view our system is more flexible. Another limitation arises if the
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Fig. 9.7 Our method realistically captures the motion and the dynamic shape of a woman
wearing a Japanese kimono from only eight video streams. Reprinted from [1] c© 2007 IEEE.

Fig. 9.8 Analysis of a fast capoeira turn kick sequence. The left column shows frames for time
t, the middle column shows frames for time t +1, and the right column shows the frames from
t morphed onto time t +1 using the dense optical flow method by Brox et al. Top row: For
motion at normal speed, the flow field produces good results, and therefore the extracted 3D
deformation constraints enables our framework to correctly track the motion of the subject.
Bottom row: If the motion is very fast, however, the optical flow is not able to compute
reliable correspondences anymore, as seen by the erroneous warp.

subject in the scene moves very quickly, since in these situations optical flow track-
ing may fail, Fig. 9.8. One way to attack this problem is to use a high-speed camera
for capturing fast scenes. However, they are more expensive and would require more
computation power. Another option is to combine our Laplacian-tracking scheme
with a marker-less 3D feature tracking algorithm that jointly uses image features
and optical flow to handle faster scenes, Chapter 10.
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Finally, our algorithm cannot capture the true shape variation of low-frequency
surface details, such as wrinkles in clothing. While they globally deform with the
model, they seem to be “baked in” to the surface. In Chapter 11, we show that
more fine details can be captured by employing a silhouette rim-based method and
a multi-view stereo algorithm.

Despite these limitations, our method is a flexible and reliable purely passive
method to capture the motion and time-varying shape of moving subjects from a
handful of video streams. Our algorithm can handle a large range of human motions
and clothing styles, making a laser scan of a subject move and deform in the same
way as its real-world counterpart in video.
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Chapter 10
Feature Tracking for Mesh-Based Performance
Capture

In this chapter, we propose our second performance capture frame-
work. First, a robust method to track 3D trajectories of features
on a moving subject recorded with multiple cameras is described.
Thereafter, by combining the 3D trajectories with a mesh deforma-
tion scheme, the performance of a moving actor is captured and the
high-quality scanned model can be directly animated such that it
mimics the subject’s motion.

As described in Chapter 8, the generation of realistic and lifelike animated charac-
ters from captured real-world motion sequences is still a hard and time-consuming
task. In the previous chapter, we presented our first performance capture system,
that uses an optical flow-based 3D correspondence estimation method to capture the
motion and dynamic shape of the moving actor. Although achieving good results,
as mentioned in Sect. 9.2, one of the main limitations of the previous approach is its
lack of robustness when the motion sequence is fast or complex.

In this chapter, we present an alternative solution, that improves the performance
of the previous technique, by combining a flow-based and an image-feature based
method. Furthermore, we divide the problem into two steps: first, image features in
3D space are robustly identified and tracked. Afterwards, using the 3D trajectories
of the features as constraints in a Laplacian-based tracking scheme, Sect. 3.2.2, the
scanned model is realistically animated over time. The simple and robust algorithm
proposed here creates shape deformations for the scanned model without specifica-
tion of explicit material parameters, and it works even for arbitrary moving subjects
or people wearing wide and loose apparel.

The main contributions of this chapter is

• a simple and robust method to automatically identify important features and track
their 3D trajectories on arbitrary subjects from multi-view video [1],

• and an efficient Laplacian-based tracking scheme that uses only a handful of
feature trajectories to realistically animate a scanned model of the recorded
subject [1].

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 87–99.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 10.1 Overview of our second performance capture framework: given a multi-view video
sequence showing a moving subject, our method automatically identifies features and tracks
their 3D trajectories. By applying the captured trajectories to a static laser-scan of the subject,
we are able to realistically animate the scanned model making it move the same way as its
real-world counterpart in the video streams.

The remainder of this chapter is structured as follows: Sect. 10.1 briefly de-
scribes our second performance capture framework. Thereafter, Sect. 10.2 details
the automatic approach to identify features and track their 3D trajectories over
time. Sect. 10.3 describes the Laplacian-based tracking scheme used to animate
the scanned model according to the constraints derived from the estimated 3D point
trajectories. Results with several captured real-world sequences and discussion are
presented in Sect. 10.4.

10.1 Overview

An overview of our second performance capture approach is shown in Fig. 10.1. Our
system expects a multi-view video (MVV) sequence as input that shows the subject
moving arbitrarily. After acquiring the sequence in our studio, Chapter 4, silhouette
images are calculated via color-based background subtraction (Sect. 2.3.1), and we
use the synchronized video streams to extract and track important features in 3D
space over time, Sect. 10.2.

Our hybrid 3D point tracking framework jointly uses two techniques to estimate
the 3D trajectories of the features from unmodified multi-view video streams. First,
features in the images are identified using the Scale Invariant Feature Transform
(SIFT), Sect. 2.3.4. Furthermore, SIFT is able to match a feature to its corresponding
one from a different camera viewpoint. This allows us to generate a set of pairwise
pixel correspondences between different camera views for each time step of input
video. Unfortunately, tracking the features over time using only local descriptors is
not robust if the human subject is wearing sparsely textured clothing. Therefore, we
use a robust dense optical flow method as an additional step to track the features
for each camera view separately in order to fill the gaps in the SIFT tracking. By
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merging both sources of information, we are able to reconstruct the 3D trajectories
for many features over the whole sequence.

Our hybrid technique is able to correctly identify and track many 3D points.
In addition to the estimation of 3D point positions, our approach also calculates
a confidence value for each estimation, which indicates how reliable a particular
feature has been located. Using confidence-weighted feature trajectories as defor-
mation constraints in the guided Laplacian-based method described in Sect. 3.2.2,
our system robustly brings a static laser-scanned mesh Mtri of the subject into life,
by making it follow the motion of the recorded actor.

10.2 Hybrid 3D Point Tracking

Our hybrid framework jointly employs local descriptors and dense optical flow to
identify features and estimate their 3D positions over time from multiple calibrated
camera views. In contrast to many other approaches [2, 4, 5], we developed an auto-
matic tracking algorithm that works directly on the images and does not require any
a priori knowledge about the moving subject. It is our goal to create a simple and
generic algorithm that can be used to track features on rigid bodies, articulated ob-
jects, and non-rigidly deforming subjects in the same way. Therefore, at this point,
we do not use shape information about the subject.

The input to our algorithm is comprised of synchronized video streams recorded
by K cameras, each containing N video frames, Fig. 10.2(a). In the first step, we
automatically identify L important features, also called keypoints, for each camera
view k and time step t, and generate a set of local descriptors Fk,t = { f 0

k,t , . . . , f L
k,t}

using SIFT [6] (see also Sect. 2.3.4).
Since the SIFT descriptors are robust against image scale, rotation, change in

viewpoints, and change in illumination, they can be used to find corresponding fea-
tures across different camera views. Given an image Ik,t , from camera view k and
time step t, and the respective set of SIFT descriptors Fk,t , we try to match each
element of Fk,t with the set of keypoints from all other camera views. We use a
matching function similar to [6], which assigns a match between f i

k,t and a key-
point in Fj,t if the Euclidean distance between their invariant descriptor vectors is
minimum. In order to discard false correspondences, nearest neighbor distance ratio
matching is used with a threshold TMATCH [7].

After matching the keypoints across all K camera views at individual time
steps, we gather all R correct pairwise matches into a list of pixel correspon-
dences Ct = {c0

t , . . . ,c
R
t }, by using all reliable matches found for each time step

t, Fig. 10.2(c). Each element cr
t = ((camu,Pi

t ),(camv,P
j

t )) stores the information
about a correspondence between two different camera views, i.e. that pixel Pi

t in
camera camu corresponds to pixel P j

t in camera view camv at time t.
Unfortunately, tracking the features over time using only the list of correspon-

dences C and connecting their elements at different time steps is not robust, because
it is very unlikely that the same feature will be found at all time instants. This is spe-
cially true if the captured images show subjects performing fast movements, where
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Fk,t
Ik,t

...

Dk

...

Ct

...

...

( A ) ( B )

( C )
( D )

( E )

L3D
Ct

D0
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Fig. 10.2 Using the synchronized video streams as input (a), our hybrid approach first identi-
fies features in the images using SIFT (b), and then matches these features between different
pairs of camera views based on their descriptors (c). In addition, we track these features for
each camera view separately using optical flow (d). At the end, reliable 3D trajectories for
the features are reconstructed by merging both information (e).

features can be occluded for a long period of time, or when the subject wears every-
day apparel with sparse texture. In the latter case, SIFT only detects a small number
of keypoints per time step, which is usually not enough for tracking articulated ob-
jects. Therefore, in order to robustly reconstruct the 3D trajectories for the features,
we decided to use optical flow to track both elements of all cr

t for each camera view
separately, i.e. the pixel Pi

t is tracked using camera view camu and the pixel P j
t using

camera view camv.
The 2D flow-based tracking method works as follows: for each camera view k,

we track all pixels over time using the warping-based method for dense optical flow
proposed by Brox et al. [3]. After calculating the optical flow ot

k(Ik,t , Ik,t+1) between
time step t and t +1 for camera k, we use ot

k to warp the image Ik,t and we verify for
each pixel in the warped image if it matches the corresponding pixel in Ik,t+1. We
eliminate the pixels that do not have a partner in t + 1, and the pixels that belong to
the background by comparing the warped pixels with the pre-computed silhouette
SILk,t+1. This process is repeated for all consecutive time steps and for all camera
views. As a result, we construct a tracking list Dk = {E0, . . . ,Eg} with G pixel
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trajectories for each camera view k, Fig. 10.2(d). Each element Ei = {Pi
0, . . . ,P

i
N}

contains the positions of the pixel Pi
t for all time steps t.

The last step of our hybrid tracking scheme merges the optical flow tracking
information with the list of correspondences to reconstruct the 3D trajectories for
all features. We take pixel correspondences from all time steps into account. For
instance, if a matching cr

t is detected by SIFT only at the end of the sequence, we
are still able to recover the anterior positions of the feature by using the optical flow
information.

For each entry cr
t = ((camu,Pi

t ),(camv,P
j

t )), we verify if the pixel Pi
t is found in

Dcamu and if the pixel P j
t is found in Dcamv . In case both elements are found, we

estimate the position of the respective 3D point, mmr(t), for the whole sequence,
as shown in Fig. 10.2(e), otherwise cr

t is discarded. The 3D positions are estimated
by triangulating the viewing rays that start at the camera views camu and camv

and pass through the respective image plane pixel at Pi
t and P j

t . However, due to
inaccuracies, these rays will not intersect exactly at a single point. In this case,
we compute a pseudo-intersection point posr

t = {x,y,z} that minimizes the sum of
squared distance to each pointing ray. We also use the inverse of this distance, sr, as
a confidence measure indicating how reliable a particular feature has been located.
If sr is below a threshold TCONF we discard it, since it indicates that cr

t assigns a
wrong pixel correspondence between two different camera views.

We also discard a trajectory mmr if it does not project into the silhouettes in
all camera views and at all time steps. This way, we can prevent the use of 3D
points whose trajectories degenerate over time as deformation constraints. We assess
silhouette-consistency using the following measure:

T SIL(mmr) =
N

∑
t=0

K

∑
k=0

PROJk
sil(posr

t , t), (10.1)

where PROJk
sil(posr

t ,t) is a function that evaluates to 1 if mmr(t) projects inside the
silhouette image of camera view k at time step t, and it is 0 otherwise. We only
consider mmr a reliable 3D trajectory if T SIL(mmr) > TRSIL. Appropriate values
for the thresholds are found through experiments.

After processing all elements of C for all time steps, we generate a list with reli-
able 3D trajectories for the features. The list L3D = {mm0, . . . ,mmh} = {(LP0,LE0),
. . . ,(LPH ,LEH)} assigns to each trajectory mmi, a tuple (LPi,LEi) containing the 3D
point positions, LPi = {posi

0, . . . , posi
N}, and the respective list of confidence values

for each estimated 3D position, LEi = {si
0, . . . ,s

i
N}. As shown in Sect. 10.4, our hy-

brid approach is able to identify and accurately track many 3D points for sequences
where the human subject is performing reasonably fast motion, even when he/she is
dressed in everyday apparel.

10.3 Feature-Based Laplacian Mesh Tracking

Using the reconstructed 3D point trajectories, the performance of the moving subject
can be captured using a scanned model of the real-world actor. For this purpose, we
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( B ) ( C )( A )

Fig. 10.3 After aligning the 3D point positions (a) with the scanned model at the reference
time step (b), our method reconstructs a novel pose for Mtri by jointly using rotational and
positional constraints on the marked vertices, derived from the 3D feature trajectories (c).

first roughly align the scan Mtri with the 3D point positions at the first time step of
video (our reference), Fig. 10.3(a). This is automatically done by applying a PCA-
based alignment scheme to a reconstructed volumetric shape-from-silhouette model
of the moving subject. Afterwards, we select H marked vertices VT = {vT h|h ∈
{0 · · ·H}} in Mtri by choosing vertices that are closest to the 3D point positions at
the reference time step, Fig. 10.3(b). These marked vertices VT are used to guide the
Laplacian-based deformation technique (Sect. 3.2.2) that deforms the static scanned
model over time mimicking its real-world counterpart in the input video.

In summary, the following procedure is performed for each time step t: first, we
calculate the local rotations R that should be applied to the marked vertices of Mtri.
The local rotation for each marked vertex vT h is calculated from the rotation of
the corresponding 3D point mmh(t) between reference time and time t by means
of a graph-based method, Sect. 9.1.4. Since we want the marked vertices VT to
perform the same rotations as the 3D points, we set RvT h = Rmmh(t) for all H 3D
points. Thereafter, we apply the Laplacian-based deformation method described in
Sect. 3.2.2 to reconstruct the vertex positions of M ′

tri, such that it best approximates
the rotated differential coordinates R, as well as the positional constraints pc, with
pc = post for all marked vertices at time t.

In Eq. 3.5, the matrix A is a diagonal matrix containing non-zero weights Ai j =
c ∗ s j

t , c being a constant, only for constrained vertices v j. We weight the marked
vertex position pos j

t for vT j at time t proportionally with respect to its corresponding
confidence value, since small values for s j

t indicate inaccuracies in the estimated 3D
position. This weighting scheme leads to a better visual animation quality for the
animated human scans, Sect.10.4.

After applying this procedure to the whole sequence, the Laplacian-based track-
ing scheme is able to animate the scanned model making it correctly follow the mo-
tion of the actor recorded in all video frames. As shown in Sect. 10.4, our approach
preserves the details and features of the mesh, and is able to generate plausible and
realistic surface deformations for subjects wearing even loose everyday apparel.
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Table 10.1 For each captured real-world sequence, the number of identified features (FEAT)
and the average confidence value (S) are shown. We also employ accuracy and quality mea-
sures for the animated scan, i.e. changes in volume (VOL), distortion of triangles (QLT), and
multi-view silhouette overlap (OVL), to demonstrate the performance of our performance
capture framework.

SEQ FEAT S [m−1] OVLP VOL QLT

CAPO 1207 65.18 95.4% 3.2% 0.03
DANC 1232 58.30 95.6% 1.8% 0.01
YOGA 1457 112.23 93.7% 3.6% 0.10
WALK 2920 71.78 95.5% 1.5% 0.01
DRSS 3132 45.72 94.4% 2.0% 0.01

10.4 Results and Discussion

We tested our framework on several real-world sequences with different male and
female test subjects recorded in our studio, Chapter 4. Our acquisition procedure
is similar to the one described in Sect. 9.2. The captured video sequences are be-
tween 150 and 400 frames long, and show a variety of different clothing styles and
motions, ranging from simple walking to yoga and capoeira moves.

As shown in the second and third columns of Table 10.1, our hybrid 3D point
tracking approach is able to identify and track many features in 3D space accu-
rately. The average confidence value (S) for the 3D point positions are large, i.e.
corresponding to position errors of around 1.0 − 2.2cm, which indicates that cor-
rect correspondences between different camera views are found over the whole
sequence. Three different frames for the yoga (YOGA) and walking (WALK) se-
quences, with selected features shown as dots, can be seen in the upper and middle
rows of Fig. 10.4. Looking at the temporal evolution, one can see that the features are
reliably tracked over time. The lower images of Fig. 10.4 also show three closeups
of the legs in the walking sequence. Features were accurately tracked, despite the
appearance ambiguities caused by the trousers with homogeneous color. If we had
used only SIFT descriptors to track these features, it would have been impossible
to track them in these homogeneous areas. In this case, the pixel correspondences
would be removed due to TMATCH , or the features would be matched in a wrong
way, i.e. features from one side of the trousers would have been matched against the
ones in the other side.

High tracking accuracy and reliability even in such difficult situations is upheld
by additionally taking into account optical flow information. Even if a correspon-
dence was only found for one time step, we can reconstruct the complete trajectory
for this feature by looking at the optical flow information. This second source of
information also enables us to apply a very high threshold TMATCH which eliminates
unreliable 3D feature matches already at an early stage. Using only the reliable ones,
optical flow robustly tracks the features separately in each camera view, and at the
end, we merge both results to reconstruct the 3D point trajectories.
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Fig. 10.4 Selected features tracked in three different frames for the yoga (upper row) and
walking sequences (middle row) and three frames of the walking sequence in detail (lower
row). Our hybrid framework correctly identifies and tracks 3D trajectories of features even
in the presence of occlusions or appearance ambiguities.
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Fig. 10.5 Side-by-side comparisons between input video frames and reconstructed poses for
the human scan. By combining the 3D point trajectories tracked with the Laplacian-based
deformation scheme, our algorithm is able to directly animate a human body scan.

Before using the 3D point trajectories to guide the deformation of the scanned
model Mtri we first choose a subset of NM points from the initial set of 3D trajecto-
ries L3D at the reference time step. This subset of points should be distributed evenly
on the model surface. This is done by ramdonly choosing an element in L3D and all
adjacent points next to it at the reference time step by using a distance threshold
TDIST . We compare the confidence values for this group of elements and choose the
point with the maximum confidence value. We continue the same procedure choos-
ing another point in L3D until all selected points are separated by a distance TDIST ,
and consequently distributed over the model’s surface. We conducted several exper-
iments with different values for TDIST , and found out that in general, values between
10cm and 20cm produce best results. For a typical sequence, this leads to around
20−50 selected points. Note that although our hybrid 3D tracking approach is able
to correctly track many more points over time, even a subset of points is sufficient to
track body poses reliably. Our selection criteria also enable us to eliminate multiple
trajectories of the same feature (stemming for different camera pairs), which bears
no useful information.
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Fig. 10.6 Overlap between reprojected model (red) and input image for the female and male
subjects. Our framework is able to correctly reconstruct their pose even when they are wearing
wide and loose apparel.

Fig. 10.5 show several side-by-side comparisons between input video frames and
tracked poses of the human scan. Our algorithm reliably recovers the poses and
creates plausible and realistic surface deformations for the male actor performing
a capoeira move, and even for the female subject wearing a long dress. Due to the
occlusion of the limbs or the wide and loose apparel, tracking the motion of these
subjects over time would have been hard with a normal motion capture system.

Due to the lack of ground truth for our experiments, we evaluate our results by
overlapping the reprojected model with the input images as shown in Fig. 10.6.
We also calculate a multi-view overlap measure by counting the average number
of pixels that do not match between the reprojected model and the input image
silhouettes for all camera views and all time steps. As shown in the plot in Fig. 10.7,
our system automatically animates the human scan making it follow the motion of
the real-world actor with a consistent silhouette-accuracy of more than 94%.

We also performed experiments to evaluate the performance of our framework
in animating the human scan. Table 10.1 summarizes the results we have obtained
employing quality and accuracy measures for several sequences. The column VOL
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Fig. 10.7 Multi-view silhouette overlap for several captured sequences. Our system accurately
makes the static human scan follow the motion of the captured real-world actor.

shows the average volume change in the animated scan over the whole sequence
relative to the initial scanned model. This measure is a numerical indicator for im-
plausible deformations. The preservation of mesh quality is analyzed by looking at
the average distortion of the triangles, QLT. It is computed by averaging the per-
triangle Frobenius norm over the mesh and over time [8]. This norm is 0 for an
equilateral triangle and approaches infinity with increasing degeneracy. Finally, the
column labeled OVLP contains the average multi-view overlap between the repro-
jected model and the input image silhouettes over time.

Table 10.1 shows that the volume change in the animated human scan is in the
range of normal non-rigid body deformations, and that triangles remain in nice
shape. It also shows that the Laplacian-based deformation approach reconstructs
the poses of the scan with high accuracy, even if the subjects wear wide and loose
everyday apparel.

We performed experiments to demonstrate the importance of the confidence
value as a weight in Eq. 3.5 as well, Sect. 10.3. Our experiments show that when
using the confidence value in the Laplacian-based scheme, surface deformations are
generated in a more reasonable and lifelike way, which leads to a better visual re-
construction quality. On the other hand, when not using it, changes in volume and
triangle distortions increase, which reduce the surface deformation quality and the
multi-view silhouette-accuracy.

Our results show that our purely passive hybrid tracking method can automati-
cally identify and track the 3D trajectories of features on a moving subject without
the need of any a priori information or optical markers. By combining it with an ef-
ficient deformation technique, it also enables us to directly and realistically animate
a static human scan making it follow the same motion as its real-world counterpart.
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Fig. 10.8 Female jazz dance sequence: the left column shows the correct input pose, the mid-
dle column shows the slightly wrong pose captured if we apply the current performance cap-
ture method, and the right column shows the better result if we apply the improved method
described in Chapter 11. While at some point in this complex sequence the feature trajec-
tories at the hand and feet are lost with the current method, the analysis-through-synthesis
framework, described in the next chapter, is able to accurately capture the female pose.

Nonetheless, our algorithm is subject to a few limitations. For the hybrid 3D point
tracking approach, the time needed to identify and track the features per multi-view
frame on a Pentium IV with 3GHz is around 3-5 minutes. Furthermore, it is hard to
recover complete feature trajectories in scenes that show very rapid motion, com-
plex occlusion situations, or many rotations that make across-camera correspon-
dence finding difficult, see Fig. 10.8. A possible alternative to partly solve these
limitations is to use a high-speed camera for capturing fast scenes. However, this
may increase the run time of the system even further. For the feature-based Lapla-
cian mesh tracking technique, although it correctly captures the body deformations
at a coarse scale, depending on the number of tracked features used in the recon-
struction process, the deformations of subtle details, such as small wrinkles, are not
captured.

In Chapter 11, we present an improved performance capture framework that
extends the capabilities of the current system, being able to reconstruct an un-
precedented range of real-world scenes at a high level of detail. As shown in the
side-by-side comparison in Fig. 10.8, the current method is not able to recover
complete trajectories for some features in the hands and feet of the subject. As a
result, it generates a slightly wrong pose for this complex sequence. In contrast,
the analysis-through-synthesis framework presented in Chapter 11 faithfully recon-
structs the pose. Furthermore, the proposed silhouette rim-based technique and the
model-guided multi-view stereo approach are able to capture the dynamic subtle
details more accurately.

Despite these limitations, the hybrid approach still has the advantage of being
applicable in other problem settings where no geometry is available. Moreover, the
current performance capture framework is able to move and deform a high-quality
scanned model in the same way as its real-world counterpart, while preserving its
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connectivity over time. Our flexible algorithm does not require optical markings,
and behaves robustly even for humans wearing sparsely textured and wide apparel.
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Chapter 11
Video-Based Performance Capture

In this chapter, by combining the power of surface- and volume-
based shape deformation techniques with a novel mesh-based
analysis-through-synthesis framework, a new marker-less approach
to capture human performances from multi-view video is described.
Furthermore, a silhouette rim-based technique and a model-guided
multi-view stereo approach are also presented, which enables the
acquisition of fine dynamic subtle details more accurately.

In the previous chapters (Chapter 8, 9 and 10), the difficulties of human perfor-
mance capture have been presented. In general, current methods do not allow for
what both actors and directors would prefer: to capture human performances densely
in space and time, i.e. to be able to jointly capture accurate dynamic shape, motion
and textural appearance of actors in arbitrary everyday apparel.

To bridge this gap, in this chapter, we describe a new marker-less dense perfor-
mance capture technique that is able to reconstruct motion and spatio-temporally
coherent time-varying geometry of a performer moving in his/her normal and even
loose or wavy clothing from multiple video streams. Our algorithm jointly deliv-
ers time-varying scene geometry with coherent connectivity, accurate time-varying
shape detail even of people wearing wide apparel such as skirts, and, being com-
pletely passive, enables us to record time-varying surface appearance as well. It
thus produces a rich dynamic scene representation which, in particular due to the
coherent geometry discretization, can be easily made available to and modified by
animators. The method described in this chapter improves over the previous ap-
proaches (Chapter 9 and 10) since it allows the acquisition of faster and more com-
plex human performances. Furthermore, fine dynamic subtle details are captured
more accurately by combining a silhouette rim-based technique and a model-guided
multi-view stereo approach.

The main contribution of the chapter is a new video-based performance capture
method [1], which

• passively reconstructs spatio-temporally coherent shape, motion and texture of
actors at high quality;

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 101–117.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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• draws its strength from an effective combination of a new skeleton-less shape de-
formation method, a new analysis-through-synthesis framework for pose recov-
ery, and a new model-guided multi-view stereo approach for shape refinement;

• and exceeds capabilities of many previous capture techniques, by allowing the
user to record people wearing loose apparel and people performing fast and com-
plex motion.

The remainder of this chapter is structured as follows: Sect. 11.1 briefly describes
our efficient performance capture framework. Performances are captured by first
employing a new analysis-through-synthesis procedure for global pose alignment in
each frame (Sect. 11.2), and thereafter, a model-guided multi-view stereo and a con-
tour alignment method recovers small-scale surface detail, Sect. 11.3. At the end, we
present the results, showing that our approach can reliably reconstruct very complex
motion, which would even challenge the limits of traditional skeleton-based optical
capturing approaches, Sect. 11.4.

11.1 Overview

Prior to capturing human performances, we take a full-body laser scan of the subject
in its current apparel by means of a Vitus SmartTM laser scanner. After scanning,
the subject immediately moves to the adjacent multi-view recording area, Chapter 4.
For each subject and each type of apparel, we record a multitude of different perfor-
mances. As a pre-processing step, color-based background subtraction is applied to
all video footage, yielding silhouette images of the captured performers, Sect. 2.3.1.

Once all of the data has been captured, our automatic performance reconstruc-
tion pipeline begins. Our computational model of shape and motion is obtained by
first transforming the raw scan into a high-quality surface mesh Mtri = (Vtri,Ttri)
(with ns vertices Vtri = {v1 . . .vns} and ms triangles Ttri = {t1 . . . tms}) employing
the method of [5], see Fig. 11.1(left). Additionally, we create a coarser tetrahedral
version of the surface scan Ttet = (Vtet ,Ttet ) (comprising of nt vertices Vtet and mt

tetrahedrons Ttet ) by applying a quadric error decimation and a subsequent con-
strained Delaunay tetrahedralization, Fig. 11.1(right). Typically, Mtri contains be-
tween 30000 and 40000 triangles, and the corresponding tet-version between 5000
and 6000 tetrahedrons. Both models are automatically registered to the first pose
of the actor in the input footage by means of a procedure based on iterative closest
points (ICP).

Our capturing framework is designed to meet the difficult challenges imposed
by our goal: to capture from sparse multi-view video a spatio-temporally coherent
shape, motion, subtlest surface deformation and textural appearance of actors per-
forming fast and complex motion in general apparel. Our method explicitly aban-
dons a skeletal motion parametrization and resorts to deformable models as scene
representation. Thereby, we are facing a harder tracking problem, but gain an in-
triguing advantage: we are now able to track non-rigidly deforming surfaces (like
wide clothing) in the same way as rigidly deforming models, and do not require
prior assumptions about material distributions or the segmentation of the model.
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Fig. 11.1 A surface scan Mtri of an actress (left) and the corresponding tetrahedral mesh
Ttet in an exploded view (right). [1] c©2008 Association for Computing Machinery, Inc.
Reprinted by permission.

The first core algorithmic ingredient of our performance capture framework is a
fast and reliable shape deformation framework, that expresses the deformation of
the whole model based on a few point handles, Sect. 3.3. The second ingredient is a
robust way to infer the motion of the deformation handles from the multi-view video
data, Sect. 11.2 and Sect. 11.3. We capture performances in a multi-resolution way
to increase reliability. First, an analysis-through-synthesis method based on image
and silhouette cues estimates the global pose of an actor at each frame on the basis of
the lower-detail tetrahedral input model, Sect. 11.2. Once global poses were found,
the low-frequency aspect of the performances, i.e. small-scale time-varying shape
details on the surface, are captured. To this end, the global poses are transferred
to the high-detail surface scan, and surface shape is refined by enforcing contour
alignment and performing model-guided stereo, Sect. 11.3.

The output of our method is a dense representation of the performance in both
space and time. It comprises of accurately deformed spatio-temporally coherent ge-
ometry that nicely captures the liveliness, motion and shape detail of the original
input.

11.2 Capturing the Global Model Pose

Our first step aims at recovering, for each time step of the video, a global pose of the
tetrahedral input model that matches the pose of the real actor. Decoupling global
pose computation from the estimation of small surfaces makes performance cap-
ture a more stable procedure. Consequently, our model representation at this point
is the coarse tetrahedral mesh Ttet . To modify its pose, we employ the volumet-
ric deformation method, Chapter 3, with its noted advantageous shape preservation
properties that facilitate tracking. In a nutshell, our global pose extraction method
computes deformation constraints from each pair of subsequent multi-view input
video frames at times t and t + 1. It then applies the volumetric shape deformation
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procedure to modify the pose of Ttet at time t (that was found previously) until it
aligns with the input data at time t + 1. In order to converge to a plausible pose
under this highly multi-modal goodness-of-fit criterion, it is essential that we ex-
tract the right types of features from the images in the right sequence and apply the
resulting deformation constraints in the correct order.

To serve this purpose, our pose recovery process begins with the extraction of 3D
vertex displacements from reliable image features, which brings our model close to
its final pose even if scene motion is rapid, Sect. 11.2.1. The distribution of 3D fea-
tures on the model surface depends on the scene structure, e.g. texture, and can, in
general, be non-uniform or sparse. Therefore, the resulting pose may not be entirely
correct. Furthermore, potential outliers in the correspondences make additional pose
update steps unavoidable. We therefore subsequently resort to two additional steps
that exploit silhouette data to fully recover the global pose. The first step refines the
shape of the outer model contours until they match the multi-view input silhouette
boundaries, Sect. 11.2.2. The second step optimizes 3D displacements of key vertex
handles until optimal multi-view silhouette overlap is reached, Sect. 11.2.3. Conve-
niently, the multi-view silhouette overlap SIL can be quickly computed as an XOR
operation on the GPU [3].

We gain further tracking robustness by subdividing the surface of the volume
model into a set R of approximately 100-200 regions of similar size during pre-
processing [9]. Rather than inferring displacements for each vertex, we determine
representative displacements for each region as explained in the following sections.

11.2.1 Pose Initialization from Image Features

Given two sets of multi-view video frames I1(t), . . . , Ik(t) and I1(t +1), . . . , Ik(t +1)
from subsequent time steps, our first processing step extracts SIFT features in each
frame [7] (see Fig. 11.2). This yields, for each camera view k and either time step,

a list of �(k) = 1, . . . ,Lk 2D feature locations u�(k)
k,t along with their SIFT feature

descriptors dd�(k)
k,t – henceforth we refer to each such list as LDk,t . SIFT features

are our descriptors of choice, as they are robust against illumination changes and
out-of-plane rotation, and enable reliable correspondence finding even if the scene
motion is fast.

Let Ttet (t) be the pose of Ttet at time t. To transform feature data into deforma-
tion constraints for vertices of Ttet (t), we first need to pair image features from time
t with vertices in the model. We therefore first associate each vti of Ttet (t) with that
descriptor ddi

k,t from each Ik(t) that is located closest to the projected location of
vti in this respective camera. We perform this computation for all camera views and
discard a feature association if vti is not visible from k or if the distance between the
projected position of vti and the image position of ddi

k,t is too large. This way, we

obtain a set of associations A(vti, t) = {dd j1
1,t , · · · ,dd jK

K,t} for a subset of vertices that
contains at most one feature from each camera. Lastly, we check the consistency
of each A(vti,t) by comparing the pseudo-intersection point pINT

i of the reprojected

rays passing through u j1
1,t , . . . ,u

jK
K,t to the 3D position of vti in model pose Ttet (t).
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Fig. 11.2 3D correspondences are extracted from corresponding SIFT features in respective
input camera views at t and t +1. These 3D correspondences, two of them illustrated by lines,
are used to deform the model into a first pose estimate for t +1. [1] c©2008 Association for
Computing Machinery, Inc. Reprinted by permission.

If the distance ‖vti − pINT
i ‖ is greater than a threshold EDIST , the original feature

association is considered implausible and vti is removed from the candidate list for
deformation handles.

The next step is to establish temporal correspondences, i.e. to find for each ver-
tex vti with feature association A(vti, t) the corresponding association A(vti, t + 1)
with features from the next time step. To this end, we preliminarily find for each
dd j

k,t ∈ A(vti,t) a descriptor dd f
k,t+1 ∈ LDk,t+1 by means of nearest neighbor dis-

tance matching in the descriptor values, and add dd f
k,t+1 to A(vti, t + 1). In practice,

this initial assignment is likely to contain outliers, and therefore we compute the fi-
nal set of temporal correspondences by means of robust spectral matching [6]. This
method efficiently bypasses the combinatorial complexity of the correspondence
problem by formulating it in closed form as a spectral analysis problem on a graph
adjacency matrix. Incorrect matches are eliminated by searching for an assignment
in which both the feature descriptor values across time are consistent, and pairwise
feature distances across time are preserved. Fig. 11.2 illustrates a subset of associ-
ations found for two camera views. From the final set of associations A(vti, t + 1),
we compute the predicted 3D target position pEST

i of vertex vti again as the virtual
intersection point of reprojected image rays through the 2D feature positions.

Each vertex vti for which a new estimated position was found is a candidate for
a deformation handle. However, we do not straightforwardly apply all handles to
move Ttet directly to the new target pose. We rather propose the following step-
wise procedure which, in practice, is less likely to converge to implausible model
configurations: We resort to the set of regions R on the surface of the tet-mesh (as
described above) and find for each region ri ∈ R one best handle from all candi-
date handles that lie in ri. The best handle vertex vti is the one whose local normal
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(a) (b)

Fig. 11.3 (a) Color-coded distance field from the image silhouette contour shown for one
camera view. (b) Rim vertices with respect to one camera view marked in red on the tetrahe-
dral model. [1] c©2008 Association for Computing Machinery, Inc. Reprinted by permission.

is most collinear with the difference vector pEST
i − vi. If no handle is found for a

region, we constrain the center of that region to its original 3D position in Ttet (t)
which prevents unconstrained surface areas from arbitrary drifting. For each region

handle, we define a new intermediate target position as q′
i = vti +

pEST
i −vti

‖pEST
i −vti‖ . Typi-

cally, we obtain position constraints q′
i for around 70% to 90% of the surface regions

R that are then used to change the pose of the model. This step-wise deformation
is repeated until the multi-view silhouette overlap error SIL(Ttet , t + 1) cannot be
further improved.

In contrast to the method proposed in Chapter 10, we do not require tracking of
features across the entire sequence, which greatly contributes to the reliability of
this method. The output of this step is a feature-based pose estimate T F

tet (t + 1).

11.2.2 Refining the Pose Using Silhouette Rims

In image regions with sparse or low-frequency textures, only few SIFT features
may have been found, which may cause a starkly uneven distribution of deforma-
tion handles, or may generate areas with no handles at all. In consequence, the pose
of T F

tet (t + 1) may not be correct in all parts. We therefore resort to another con-
straint that is independent of image texture and has the potential to correct such
misalignments. To this end, we derive additional deformation constraints for a sub-
set of vertices on T F

tet(t + 1) that we call rim vertices VRIM(t + 1), see Fig. 11.3(b).
Rim vertices are vertices whose projections lie on the silhouette contour of the per-
former in at least one Ik(t + 1), and whose normals are perpendicular to its viewing
direction. By displacing them along their normals until alignment with the respec-
tive silhouette boundaries in 2D is reached, we are able to improve the pose accuracy
for the model at t + 1.
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(a) (b)

(c) (d)

Fig. 11.4 Model (a) and silhouette overlap (b) after the rim step; slight pose inaccuracies in
the leg and the arms appear black in the silhouette overlap image. (c),(d) After key vertex
optimization, these pose inaccuracies are removed and the model strikes a correct pose. [1]
c©2008 Association for Computing Machinery, Inc. Reprinted by permission.

In order to find the elements of VRIM(t + 1), we first calculate contour images
Ck,t+1 using the rendered volumetric model silhouettes. A vertex vti is considered a
rim vertex if it projects into close vicinity of the silhouette contour in (at least) one
of the Ck,t+1, and if the normal of vti is perpendicular to the viewing direction of the
camera k.

For each element vti ∈ VRIM(t + 1) a 3D displacement is computed by analyzing
the projected location uk,t+1 of the vertex into the camera k that originally defined its
rim status. The value of the distance field from the contour at the projected location
defines the total displacement length in vertex normal direction, Fig. 11.3(a). This
way, we obtain deformation constraints for rim vertices which we apply in the same
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step-wise deformation procedure that was already used in Sect. 11.2.1. The result is
a new model configuration T R

tet(t + 1) in which the projections of the outer model
contours more closely match the input silhouette boundaries.

11.2.3 Optimizing Key Handle Positions

In the majority of cases, the pose of the model in T R
tet (t + 1) is already close to

a good match. However, in particular if the scene motion was fast or the initial
pose estimate from SIFT was not entirely correct, residual pose errors remain. We
therefore perform an additional optimization step that corrects such residual er-
rors by globally optimizing the positions of a subset of deformation handles un-
til good silhouette overlap is reached. Note that for the success of this step, a
good pose initialization from the preceding steps is indispensable. Only in their
combination all pose update strategies make up a robust analysis-through-synthesis
framework.

Instead of optimizing the position of all 1000 − 2000 vertices of the volumet-
ric model, we only optimize the position of typically 15-25 key vertices Vk ⊂ Vtet

until the tetrahedral deformation scheme produces optimal silhouette overlap. We
ask the user to specify key vertices manually, a procedure that has to be done
only once for every model. Typically, key vertices are marked close to anatomi-
cal joints, and in case of model parts representing loose clothing, a simple uni-
form handle distribution produces good results. Tracking robustness is increased
by designing our energy function such that surface distances between key handles
are preserved, and pose configurations with low distortion energy ED are preferred,
Sect. 3.3.

Given all key vertex positions vti ∈ Vk in the current model pose T R
tet(t + 1), we

optimize for their new positions pi by minimizing the following energy functional:

E(Vk) = wS ·SIL(Ttet(Vk), t + 1)+ wD ·ED + wC ·EC . (11.1)

Here, SIL(Ttet(Vk),t + 1) denotes the multi-view silhouette overlap error of the tet-
mesh in its current deformed pose Ttet (Vk), which is defined by the new positions
of the Vk. ED is the deformation energy as defined in Sect. 3.3. Implicitly we reason
that low energy configurations are more plausible. EC penalizes changes in distance
between neighboring key vertices. All three terms are normalized and the weights
wS, wD, and wC are chosen such that SIL(Ttet(Vk), t + 1) is the dominant term. In
our solution, ED and EC are used to regularize the solution avoiding that the dis-
tance between neighboring key vertices increases or decreases too much, which
creates bad deformations. We use a Quasi-Newton LBFGS-B method to minimize
Eq. 11.1 [2].

Fig. 11.4 illustrates the improvements in the new output pose T O
tet (t + 1) achieved

through key handle optimization. The output of this step is a new configuration of
the tetrahedral model T O

tet (t + 1) that captures the overall stance of the model and
serves as the starting point for the subsequent surface detail capture.
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(a) (b) (c)

Fig. 11.5 Capturing small-scale surface detail: (a) first, deformation constraints from silhou-
ette contours, shown as red arrows, are estimated. (b) Additional deformation handles are
extracted from a 3D point cloud that was computed via model-guided multi-view stereo.
(c) Together, both sets of constraints deform the surface scan to a highly accurate pose. [1]
c©2008 Association for Computing Machinery, Inc. Reprinted by permission.

11.2.4 Practical Considerations

The above sequence of steps is performed for each pair of subsequent time instants.
Surface detail capture, Sect. 11.3, commences after the global poses were found for
all frames.

Typically, the rim step described in Sect. 11.2.2 is performed once more after
the last silhouette optimization step, which in some cases leads to a better model
alignment. We also perform a consistency check on the output of our low frequency
pose capture approach to correct potential self-intersections. To this end, for every
vertex lying inside another tetrahedron, we use the volumetric deformation method
to displace this vertex in outward direction along its normal until the intersection is
resolved.

11.3 Capturing Surface Detail

Once global pose has been recovered for each frame, the pose sequence of Ttet

is mapped to Mtri, Sect. 3.3. In the following section, the process of shape detail
capture at a single time step is explained.

11.3.1 Adaptation along Silhouette Contours

In a first step, we adapt the silhouette rims of our fine mesh to better match the
input silhouette contours. As we are now working on a surface mesh which is al-
ready very close to the correct configuration, we can allow a much broader and less
smooth range of deformations than in the volumetric case, and thereby bring the
model to much closer alignment with the input data. At the same time, we have to
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be more careful in selecting our constraints, since noise in the data now has more
deteriorating influence. This also means that our deformation is less robust against
errors and we have to carefully select the constraints.

We calculate rim vertices for the high-resolution surface mesh similarly to
Sect. 11.2.2, Fig. 11.5(a). For each rim vertex, the closest 2D point on the silhouette
boundary is found in the camera view that defines its rim status, and we check if the
image gradient at the input silhouette point has a similar orientation to the image gra-
dient in the reprojected model contour image. If this is the case, the back-projected
input contour point defines the target position for the rim vertex. If the distance be-
tween back-projection and original position is smaller than threshold ERIM , we add
it as a constraint to Eq. 3.5. We also check if the vertex vi and the 2D contour point
have a similar orientation by comparing their image projected gradients.

We use a low weight wi for the rim constraint points in Eq. 3.5. This has a reg-
ularizing and damping effect on the deformation that minimizes implausible shape
adaptation in the presence of noise. After processing all vertices, we solve for the
new surface M ′(t)tri. This procedure is iterated up to 20 times or until silhouette
overlap cannot be further improved.

11.3.2 Model-Guided Multi-view Stereo

Although the silhouette rims only provide reliable constraints on outer boundaries,
they are usually evenly distributed on the surface. Hence, the Laplacian-based de-
formation method in general nicely adapts the shape of the whole model also in
areas which do not project on image contours. Unless the surface of the actor has a
complicated shape with many concavities, the result of the rim adaptation is already
a realistic representation of the correct shape.

However, in order to recover shape details in regions that do not project to sil-
houette boundaries, such as folds and concavities in a skirt, we resort to photo-
consistency information. To serve this purpose, we derive additional deformation
constraints by applying the multi-view stereo method proposed by [4]. Since our
model is already close to the correct surface, we can initialize the stereo optimiza-
tion from the current surface estimate and constrain the correlation search to 3D
points that are at most ±2 cm away from M (t)tri.

As we have far less viewpoints of our subject than Goesele et al. [4] and our ac-
tors can wear apparel with little texture, the resulting depth maps (one for each in-
put view) are often sparse and noisy. Nonetheless, they provide important additional
cues about the object’s shape. We merge the depth maps produced by the stereo ap-
proach into a single point cloud P , Fig. 11.5(b), and thereafter project points from
Vtri onto P using a method similar to [8]. These projected points provide addi-
tional position constraints that we can use in conjunction with the rim vertices in the
Laplacian-based deformation framework, Eq. 3.5. PVt give us additional positional
constraints to add to the energy minimization from Eq. 3.5 in addition to the rim
constraints RVt . Given the uncertainty in the data, we solve the Laplace system with
lower weights for the stereo constraints, Sect. 3.2.2.
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Fig. 11.6 A sequence of poses captured from eight video recordings of a capoeira turn kick.
Our algorithm delivers spatio-temporally coherent geometry of the moving performer, captur-
ing both the time-varying surface detail as well as details in his motion faithfully. [1] c©2008
Association for Computing Machinery, Inc. Reprinted by permission.

11.4 Results and Discussion

Our test data were recorded in our acquisition setup described in Chapter 4. It com-
prises of 12 sequences showing four different actors, and feature between 200 and
600 frames each. To show the large application range of our performance capture
algorithm, the subjects wore a wide range of different apparel, ranging from tight to
loose, and made of fabrics with prominent texture as well as plain colors only. Also,
the recovered set of motions ranges from simple walks, over different dance styles,
to fast capoeira sequences. As shown in Figs. 11.6, 11.7 and 11.10, our algorithm
faithfully reconstructs this wide spectrum of scenes. We would also like to note that,
although we focused on human performers, our algorithm would work equally well
for animals provided that a laser scan can be acquired.

Fig. 11.6 shows several captured poses of a very rapid capoeira sequence in which
the actor performs a series of turn kicks. Despite the fact that in our 24 fps record-
ings the actor rotates by more than 25 degrees in-between some subsequent frames,
both shape and motion are reconstructed with high fidelity. The resulting anima-
tion even shows small deformation details such as the waving of the trouser legs.
Furthermore, even with the plain white clothing that the actor wears in the input,
which exhibits only few traceable SIFT features, our method performs reliably as
it can capitalize on rims and silhouettes as additional sources of information. Com-
paring a single moment from the kick to an input frame confirms the high quality of
our reconstruction, Fig. 11.7 (left) (Note that input and virtual camera views differ
slightly). Furthermore, Fig. 11.7 (middle) shows that our method is able to capture
a fast and fluent jazz dance performance with complicated self-occlusions, such as
the inter-twisted arm-motion in front of the torso.

Fig. 11.7(right) and Fig. 11.10 show one of the main strengths of our method,
namely its ability to capture the full time-varying shape of a dancing girl wearing
a skirt. Even though the skirt is of largely uniform color, our method captures the
natural waving and lifelike dynamics of the fabric. The overall body posture and the
folds of the skirt were recovered nicely without the user specifying a segmentation
of the model beforehand. A visual comparison to the input shows that the captured
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Table 11.1 Average run times per frame for individual steps. [1] c©2008 Association for
Computing Machinery, Inc. Reprinted by permission.

Step Time
SIFT step (Sect. 11.2.1) ∼5s

Global rim step (Sect. 11.2.2) ∼4s
Key handle optimization (Sect. 11.2.3) ∼40s

Contour-based refinement (Sect. 11.3.1) ∼4s
Stereo, 340×340 depth maps (Sect. 11.3.2) ∼30s

skirt geometry exhibits the same motion detail and lifelike dynamics as the real
skirt, and at the same time, the rest of the body is faithfully captured too. Up to
now, other passive methods from the literature have not been able to capture both
spatio-temporally coherent shape and motion of such kind of performances. We
would also like to note that in these sequences the benefits of the stereo step in
recovering concavities are most apparent. In the other test scenes, the effects are
less pronounced and we therefore deactivated the stereo step (Sect. 11.3.2) there to
reduce computation time. In general, we also smooth the final sequence of vertex
positions to remove any remaining temporal noise.

11.4.1 Validation and Discussion

Table 11.1 gives detailed average timings for each individual step in our algorithm.
These timings were obtained with a highly unoptimized single-threaded code run-
ning on an Intel Core Duo T2500 Laptop with 2.0 GHz. We see plenty of room
for implementation improvement, and anticipate that parallelization can lead to a
significant run time reduction.

So far, we have visually shown the high capture quality, as well as the large
application range and versatility of our approach. To formally validate the accu-
racy of our method, we have compared the silhouette overlap of our tracked out-
put models with the segmented input frames. We use this criterion since, to our
knowledge, there is no gold-standard alternative capturing approach that would pro-
vide us with accurate time-varying 3D data. The re-projections of our final results
typically overlap with over 85% of the input silhouette pixels, already after global
pose capture only (Fig. 11.8(a)). Surface detail capture further improves this over-
lap to more than 90%. Please note that this measure is slightly negatively biased
by errors in foreground segmentation in some frames that appear as erroneous sil-
houette pixels. Visual inspection of the silhouette overlap therefore confirms the
almost perfect alignment of model and actual person silhouette. Fig. 11.8(b) shows
a blended overlay between the rendered model and an input frame which proves
this point.

Our algorithm robustly handles even noisy input, e.g. due to typically observed
segmentation errors in our color-based segmentation. In particular, if foreground
colors resemble the background (e.g. black hair in front of a black background in
some of our data), color-based segmentation may produce erroneous silhouettes.
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Fig. 11.7 (top) One moment from a very fast capoeira turn kick. (middle) Jazz dance posture
with reliably captured inter-twisted arm motion. (bottom) Reconstructed details in the danc-
ing sequence showing a girl wearing a skirt. (Input and virtual viewpoints differ minimally).
[1] c©2008 Association for Computing Machinery, Inc. Reprinted by permission.

Nonetheless, our method delivers reliable reconstructions under typically observed
segmentation errors. All 12 input sequences were reconstructed fully-automatically
after only minimal initial user input. As a pre-processing step, the user marks the
head and foot regions of each model to exclude them from surface detail cap-
ture. Even slightest silhouette errors in these regions (in particular due to shadows
on the floor and black hair color) would otherwise cause unnatural deformations.
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(a) (b)

Fig. 11.8 Evaluation: per-frame silhouette overlap in per cent after global pose estimation
and after surface detail reconstruction (a). Blended overlay between an input image and the
reconstructed model showing the almost perfect alignment of our performance capture ap-
proach (b). [1] c©2008 Association for Computing Machinery, Inc. Reprinted by permission.

Furthermore, for each model the user once marks at most 25 deformation handles
needed for the key handle optimization step, Sect. 11.2.3.

In individual frames of two out of three capoeira turn kick sequences (11 out of
around 1000 frames), as well as in one frame of each of the skirt sequences (2 frames
from 850 frames), the output of global pose recovery showed slight misalignments
in one of the limbs. Please note that, despite these isolated pose errors, the method
always recovers immediately and tracks the whole sequence without drifting – this
means the algorithm can run without supervision and the results can be checked
afterwards. All observed pose misalignments were exclusively due to oversized sil-
houette areas because of either motion blur or strong shadows on the floor. Both of
this could have been prevented by better adjustment of lighting and shutter speed,
and by using more advanced segmentation schemes. In either case of global pose
misalignment, at most two deformation handle positions had to be slightly adjusted
by the user. In none of the over 3500 input frames we processed in total, it was
necessary to manually correct the output of surface detail capture (Sect. 11.3).

Despite our method’s large application range, there are a few limitations to be
considered. Our current silhouette rim matching may produce erroneous deforma-
tions if the topological structure of the input silhouette is too different from the
reprojected model silhouette. As our low-frequency adaptation generates a good
initialization, which is already close to the actual silhouette, this effect can be over-
come by careful selection of parameters. However, in none of our test scenes this
turned out to be an issue. Currently, we are recording in a controlled studio en-
vironment to obtain good segmentations, but are confident that a more advanced
background segmentation will enable us to handle outdoor scenes.

Moreover, there is a resolution limit to our deformation capture. Some of the
high-frequency detail in our final result, such as fine wrinkles in clothing or details
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Fig. 11.9 Input frame (left) and reconstructions using a detailed (middle) and a coarse model
(right). Although the fine details on the skirt are due to the input laser scan, even with a
coarse template, our method captures the folds and the overall lifelike motion of the cloth.
[1] c©2008 Association for Computing Machinery, Inc. Reprinted by permission.

of the face, has been part of the laser-scan in the first place. The deformation on this
level of detail is not actually captured, but it is ”baked in” to the deforming surface.
To illustrate the level of detail that we are actually able to reconstruct, we generated
a result with a coarse scan that lacks fine surface detail. Fig. 11.9 shows an input
frame (left), as well as the reconstructions using the detailed scan (middle) and the
coarse model (right). While, as noted before, finest detail in Fig. 11.9 (middle) is due
to the high-resolution laser scan, even with a coarse scan, our method still captures
the important lifelike motion and the deformation details, Fig. 11.9 (right).

Also, in our system the topology of the input scanned model is preserved over
the whole sequence. For this reason, we are not able to track surfaces which arbi-
trarily change apparent topology over time (e.g. the movement of hair or deep folds
with self-collisions). Further on, although we prevent self-occlusions during global
pose capture, we currently do not correct them in the output of surface detail cap-
ture. However, their occurrence is rather seldom. Manual or automatic correction by
collision detection would also be feasible.

Our volume-based deformation technique essentially mimics elastic deformation,
thus the geometry generated by the low-frequency tracking may in some cases have
a rubbery look. For instance, an arm may not only bend at the elbow, but rather bend
along its entire length. Surface detail capture eliminates such artifacts in general,
and a more sophisticated yet slower finite element deformation could reduce this
problem already at the global pose capture stage.

Despite these limitations, we have presented a new video-based performance cap-
ture approach that produces a novel dense and feature-rich output format comprising
of spatio-temporally coherent high-quality geometry, lifelike motion data, and op-
tionally the surface texture of recorded actors. By combining an efficient volume-
and surface-based deformation schemes, a multi-view analysis-through-synthesis
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Fig. 11.10 Side-by-side comparison of the input image and the reconstruction of a danc-
ing girl wearing a skirt (input and virtual viewpoints differ minimally). Body pose and de-
tailed geometry of the waving skirt, including lifelike folds and wrinkles visible in the input,
have been recovered. [1] c©2008 Association for Computing Machinery, Inc. Reprinted by
permission.

procedure, and a multi-view stereo approach, our method is able to reconstruct an
unprecedented range of real-world scenes at a high level of detail. The proposed
method supplements and exceeds the capabilities of optical capturing systems that
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are widely used in the industry, and will provide animators and CG artists with a
new level of flexibility in acquiring and modifying real-world content.
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Chapter 12
High-Quality 3D Videos

In this chapter, we describe a method to render realistic 3D Videos by
applying a clever dynamic 3D texturing scheme to the moving geom-
etry representation captured by the methods proposed in the previous
chapters. By displaying high-quality renderings of the recorded actor
from any viewpoint, our system enables new interesting applications
for 3D Television.

In recent years, an increasing research interest in the field of 3D Video process-
ing has been observed. The goal is to render a real-world scene from arbitrary novel
viewpoints photo-realistically. Since the human actor is presumably the most impor-
tant element of many real-world scenes, the analysis of motion and shape of humans
from video, as well as their convincing graphical rendition is required, which is still
a challenging task.

In the traditional model-based approach to 3D Video, the motion of a simpli-
fied body model is first estimated from multiple video streams [4, 3], and during
rendering, it is textured using the input footage. Although these methods deliver re-
alistic free-viewpoint renderings of virtual actors, we expect that a more accurate
underlying geometry increases realism even further.

By combining the detailed captured human performances, using any of the meth-
ods presented in Chapters 9, 10, or 11, with the multi-view projective texture
method proposed in [3], convincing renditions of human actors from arbitrary syn-
thetic viewpoints can be generated in real-time. Due to the highly-detailed underly-
ing scene geometry, the visual results are much better than previous model-based or
shape from silhouette-based 3D Video methods, Sect. 8.1.3. In addition, since our
performance capture methods generate a natural and time-consistent geometry, 3D
Video applications that until now would require a lot of effort are simplified, e.g.
3D Video editing and 3D Video compositing. For example, one can generate multi-
ple single 3D Video scenes, which afterwards could easily be edited and composed
together in order to create new sequences.

The main contribution of this chapter is a

• system combining a detailed dynamic scene representation with a projective
texture method, enabling realistic renditions of human subjects from arbitrary
synthetic viewpoints [1].
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In this chapter, we first describe a dynamic multi-view texturing method,
Sect. 12.1. Thereafter, Sect. 12.2 presents the results obtained with our 3D Video
system, showing the captured real world scenes from novel synthetic camera per-
spectives.

12.1 Creating 3D Videos

By combining any of the three previous performance capture methods described in
this book, the motion, dynamic shape, and texture information from moving subjects
is acquired. This data can be used to create and render convincing free-viewpoint
videos that reproduce the omni-directional appearance of the actor. Since no mark-
ers are needed to capture the scene, time-varying video footage is available and life-
like surface appearance can be generated using the projective texturing technique
described in [3].

In order to display the model, the color of each rendered pixel c( j) is determined
by blending all k input multi-view video images Ii according to

c( j) =
k

∑
i=1

νi( j)ωi( j)Ii( j) (12.1)

where ωi( j) denotes the blending weight of camera i and νi( j) = {0,1} is the local
visibility. During texture pre-processing, the weights are calculated and the product
νi( j)ωi( j) is normalized to ensure energy conservation.

Technically, Eq. 12.1 can be evaluated for each fragment on the GPU, and the
rasterization engine interpolates the blending values from the triangle vertices. By
this means, time-varying cloth folds and creases, shadows, and facial expressions are
faithfully reproduced, leading to a very natural, dynamic appearance of the rendered
object.

Blending Weights

The blending weights determine the contribution of each input camera image to the
final color of a surface point. If surface reflectance can be assumed to be approxi-
mately Lambertian, view-dependent reflection effects play no significant role, and
high-quality renditions can be obtained by blending the video images intelligently.
Let θi denote the angle between a vertex normal and the optical axis of camera i.
By emphasizing the camera view with the smallest angle θi for each vertex, i.e. the
camera that views the vertex most head-on, a consistent, detail-preserving texture is
obtained.

Following [3], a visually convincing weight assignment has been found to be

ωi =
1

(1 + max j(1/θ j)− 1/θi)α . (12.2)
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(a) (b) (c)

Fig. 12.1 Small differences between object silhouette and model outline causes erroneous
texture projections (a) that can be corrected by applying an extended soft shadowing method
(b). Morphologically dilated segmented input video frames can be used to improve projective
texturing (c).

The parameter α determines the influence of a vertex orientation with respect
to the camera viewing directions and consequently the impact of the most head-on
camera view per vertex. Singularities are avoided by clamping the value of 1/θi to
a maximal value. Additionally, the weights ωi are normalized to sum up to one.

Visibility

Unfortunately, in projective texturing, occlusions are not taken into account and
hidden surfaces can be erroneous textured. However, the z-buffer test can be used to
determine for every time step which regions are visible from each camera view. Due
to inaccuracies in the geometry model, it can happen that the silhouette outlines in
the images do not correspond exactly to the outline of the model. As a result, when
projecting video images onto the model, a texture seam belonging to some frontal
body part may fall into another body part farther back, Fig. 12.1(a).

To avoid such artifacts, extended soft shadowing is applied. For each camera
view, all object regions of zero visibility are determined not only from the actual
position of the camera, but also from several slightly displaced virtual camera posi-
tions. Each vertex is tested whether it is visible from all camera positions. A triangle
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Fig. 12.2 Free-viewpoint renditions with high-quality geometry models. Due to the accurate
geometry, the rendered appearance of the actor (left sub-images) nicely corresponds to his
true appearance in the real world (right sub-images). Reprinted from [2] c© 2007 IEEE.

is textured by a camera image only if all of its three vertices are completely visible
from that camera, Fig. 12.1(b).

Furthermore, to reduce rendering artifacts caused by small segmented silhouette
outlines, all image silhouettes are expanded by a couple of pixels prior to rendering.
Using a morphological filter operation, the subject’s outline in all video images is
dilated by copying the silhouette boundary pixel values to adjacent background pixel
positions, Fig. 12.1(c).

12.2 Results and Discussion

By coupling our performance capture methods with the texturing approach de-
scribed in this chapter, realistic 3D Videos can be displayed in real-time. Fig. 12.2
shows two free-viewpoint renditions of a dynamically textured animated model in
comparison to the original images of the subject. The free-viewpoint renditions re-
flect the true appearance of the actor, confirming that the virtual viewpoint renditions
look very lifelike. Since we are given a better surface geometry, texture blending ar-
tifacts are hardly observed. Furthermore, we can even reproduce the true shape of
the sweater which would not have been possible with a coarse template model [3].



12.2 Results and Discussion 123

Fig. 12.3 (top-middle) High-quality renditions showing a female dancer wearing a skirt and
(bottom) renditions of a male actor performing a fast and complex capoeira turn kick. The
time-varying refined geometry acquired by our previous performance capture approaches
leads to a better visual quality. [1] c©2008 Association for Computing Machinery, Inc.
Reprinted by permission.

We have created 3D Videos from a variety of scenes ranging from simple walk-
ing sequences over dancing moves to complex and expressive capoeira turn kicks.
Fig. 12.3 displays renditions showing the female dancer wearing a skirt and the male
actor performing a fast and complex turn kick. These sequences are ideal test cases
to validate the high-quality of the generated 3D Videos as they exhibit rapid and
complex rigid and non-rigid motions. Another advantage of our scheme is that it
allows a contiguous surface parameterization of the model, which facilitates higher-
level processing operations, as they are needed for 3D Video editing or in reflectance
estimation techniques [5, 6]
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Although clever texture blending can mask most geometry inaccuracies if a
coarse geometry is used, combining a dynamically refined shape representation, ac-
quired by our previous performance capture approaches, leads to an even better vi-
sual quality. Improvements in the renderings are due to the improved geometry and,
consequently, less surface blending errors during projective texturing are generated.
This combination enables high-quality reconstruction of human actors completely
passively, and opens the door for attacking new challenging reconstruction problems
that were hard due to the lack of a decent dynamic scene capture technology.
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Part IV
Processing Mesh Animations



Chapter 13
Problem Statement and Preliminaries

In this part of the book, we propose two novel techniques to simplify
the process of mesh animations. First, an automatic method to
extract a plausible kinematic skeleton, skeletal motion parameters,
and surface skinning weights from arbitrary mesh animations is
presented. Thereafter, a method to automatically transform mesh
animations into animation collages, i.e. moving assemblies of shape
primitives from a database, is described.

It has become increasingly popular to create, edit and represent animations not by
means of a classical skeleton-based model, but in the form of deforming mesh se-
quences. The reason for this new trend is that novel mesh deformation methods, as
the ones presented in Chapter 3, as well as new surface based scene capture tech-
niques, like the methods presented in the third part of the book, offer a great level
of flexibility during animation creation. However, unfortunately the resulting scene
representation is less compact than skeletal ones and there is not yet a rich toolbox
available which enables easy post-processing and modification of mesh animations.

Animators are used to a large repertoire of tools for editing and rendering tra-
ditional skeletal animations, but yet lack the same set of tools for working with
mesh-based dynamic scene representations. The method proposed in Chapter 14
bridges this gap, enabling the fully-automatic conversion of a mesh animation into
a skeleton-based animation, that can be edited with off-the-shelf tools.

A second novel application is described in Chapter 15. Frequently, researchers
in computer graphics aim at developing algorithms that enable the computer and
even unexperienced users to reproduce the look of certain styles of visual arts. The
proposed system brings together the traditional art form of a collage with the most
prominent art form in computer graphics, namely 3D animation, allowing the com-
puter artist to automatically convert her favorite mesh animation into a moving as-
sembly of 3D shape primitives from a database.

In summary, the main contributions of this part of the book are

• a motion-driven mesh segmentation method [3];
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• an algorithm to fully-automatic extract a skeleton structure, skeletal motion
parameters, and surface skinning weights from arbitrary deforming mesh se-
quences [3];

• a system to create animation collages from mesh animations, generating a com-
plete reassembly of the original animation in a new abstract visual style that
imitates the spatio-temporal shape and deformation of the input [38].

This chapter proceeds with a review of closely related work in Sect. 13.1. There-
after, in the following chapters, our two novel approaches to process mesh anima-
tions are described in Chapter 14 and Chapter 15. We believe that our new methods
are important contributions to the animator’s toolbox with a variety of applications
in visual arts, animated movie production, and game productions.

13.1 Related Work

In our projects, we jointly solve a variety of algorithmic subproblems by extending
ideas from different research areas. In the following sections, we highlight selected
related papers from these research categories.

13.1.1 Motion-Driven Mesh Segmentation

Segmenting a static mesh in meaningful parts is an active field of research [34].
However, recently researchers started to also exploit temporal information in mesh
animations to create level of detail [35], to improve compression [24, 23, 32], to
motion-decompose mesh animations for fast ray-tracing [12], and to cluster trian-
gles in mesh animations for fast rendering [15]. Unfortunately, these methods may
generate segments that are not spatially and temporally consistent, i.e. they do not
correspond to underlying kinematic hierarchies and are not guaranteed to be spa-
tially connected.

Most recently, [33] proposed a method for extracting a hierarchical, rigid skeleton
from a set of example poses, that can also be used for motion-driven segmentation.
The main difference to a segmentation method that we propose in the next chapter
is the fact that we robustly segment the model by means of spectral clustering. This
gives us much greater flexibility, as we can produce segmentations at different user-
controlled levels of detail, or automatically detect the optimal number of clusters.

13.1.2 Skeleton Reconstruction

Different ways for performing skeleton extraction, each of them tailored to a specific
data type and application, have been proposed in the literature. Some approaches
extract skeletons from static meshes to hierarchically decompose the shape [26], to
segment the mesh in meaningful regions [16], to gain information on the model’s
topology [36], and to perform simple mesh editing operations [27, 44, 39]. Thus,
extraction of an animation skeleton is not the goal.
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The accurate extraction of kinematically and biologically plausible animation
skeletons is of great importance in optical motion capture, where the skeletal struc-
ture needs to be inferred from marker trajectories [21, 2] or shape-from-silhouette
volumes [1]. Similarly, kinematic skeletons can be reconstructed from a set of range
scans of humans [4], from CT scans of the human hand [22], from a static surface
mesh of a known character [5], or from pose examples [33].

In contrast, the approach proposed in Chapter 14 makes use of entire motion
sequences to extract kinematic hierarchies more robustly. It creates a plausible an-
imation skeleton that best explains the data and that closely resembles a skeleton
designed by an animator, in case such a skeleton exists for the data set.

13.1.3 Character Skinning

Skinning (also called enveloping) maps the articulated motion of the skeleton to
deformations of the character’s surface. Due to its efficiency, ease of implementa-
tion, and support in many commercial packages, the most widely used method is
linear blend skinning [25], where vertex transformations are expressed as weighted
linear combinations of bone transformations. Unfortunately, standard linear blend-
ing has limited modeling power and cannot reliably reproduce certain effects, such
as muscle bulging. Recent blending schemes look at several example poses and
suggest methods to overcome the limitations inherent to linear blending by us-
ing multi-linear blending weights [43], additional bones to increase reconstruction
faithfulness [28], or affine transformations to calculate the deformations [15]. More
recently, an improved example-based method has been proposed by [22] and aug-
mented with a GPU approach [31].

In general, the former approaches offer a great level of realism, but are limited
by the number of input examples. Alternatively, advanced skinning techniques can
also be used to remove some artifacts of the traditional linear method, such as direct
quaternion blending [13], spherical blending [18], log-matrix blending [9], or dual
quaternion skinning [17].

In a different line of thinking, researchers recently suggested to use the motion
of a kinematic skeleton to express constraints for a surface deformation method
like a Laplacian deformation [47] or a Poisson deformation [42]. By this means,
convincing animations can be obtained as one can capitalize on the full modeling
flexibility of a more complex mesh deformation approach.

The skinning method that we detail in the next chapter is closely related to the one
proposed in [7], where the skeleton fitted to a static model is used to automatically
compute the skinning weights. However, in contrast to their method, the proposed
approach uses an entire sequence of mesh poses and extracted skeletons to improve
the estimation of the skinning weights.

13.1.4 Editing Mesh Animations

Similar in spirit to our algorithm are methods that manipulate a mesh animation
directly based on the spatio-temporal mesh editing operators [46, 20]. While the
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flexibility of these methods is very high and the resulting edited animations are of
high visual quality, they require a fundamental redesign of existing animation tools
and do not allow data compression. In particular, when the mesh animation can
be explained by a skeleton, transforming a mesh animation into a skeletal one is
advantageous, as it enables fast and easy post-processing using the full spectrum of
already existing software.

A first step in this direction was taken in [33] where a skeleton and its skinning
weights are estimated from a set of example poses. The main differences to the
method described in Chapter 14 is that we exploit the full motion information in the
input to robustly learn a skeleton by means of spectral clustering, that we get a full
range of skeletal motion parameters for the input animation which gives us greater
flexibility during post-processing, and that we fit our skinning weights to the entire
range of animation frames leading to more reliable estimates.

13.1.5 Shape Matching

The fitting of static shapes to generic primitives, like ellipsoids or general quadrics,
has been widely used in geometry processing for efficient data transmission [8],
medical visualization [6], or segmentation and piecewise shape approximation [45]
in reverse engineering. Alternatively, if the application is bound to work with given
primitives, 3D shape matching techniques can also be employed [40, 37].

Global shape matching approaches compare different shapes based on numeri-
cal descriptors such as shape distributions [30], Fourier descriptors [41], moment
invariants [10, 29], or spherical harmonics [19]. Local shape matching can also be
used to identify correspondences between subparts of shapes using artificial surface
features [11] or topology graph-based alignment [14].

In our work on animation collages, Chapter 15, we have developed a novel spatio-
temporal matching approach based on spherical harmonic descriptors [19], which is
more robust and provides a more compact representation to describe the shapes in
our time-dependent matching problem.
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Chapter 14
Reconstructing Fully-Rigged Characters

In this chapter, we propose a method to automatically extract a plau-
sible kinematic skeleton, skeletal motion parameters, and surface
skinning weights from arbitrary mesh animations, bridging the gap
between the mesh-based and the skeletal paradigms. By this means,
sequences captured in the previous chapters can be automatically
transformed into fully-rigged virtual characters.

As mentioned in Chapter 13, a great level of flexibility during animation creation
can be achieved by representing animations not by means of a classical skeleton-
based model, but in the form of deforming mesh sequences. This is demonstrated
in the part III of the book, where we described algorithms to perform mesh-based
performance capture. However, until now there is not yet a large amount of methods
available which enables easy post-processing and compression of mesh animations.

Xu et al. [20] propose to close this gap by introducing a set of mesh-based opera-
tions to post-process surface animations in a similar manner as kinematic represen-
tations. Although their method allows for flexible post-processing of time-varying
surfaces, it requires a fundamental redesign of existing animation tools and also
does not explore data compression possibilities. The latter was the focus of the work
by James et al. [9] who aim at extracting a skinning representation from mesh se-
quences that is well-suited for rendering on graphics hardware but not meant to be
used for editing.

In contrast, in this chapter, we propose a method that enables the fully-automatic
conversion of an arbitrary mesh animation into a skeleton-based animation. By this
means, deforming mesh sequences are transformed into fully-rigged virtual sub-
jects. The original input can then be quickly rendered based on the new compact
bone and skin representation or modified using the full repertoire of already exist-
ing animation tools.

Given as input a deforming mesh sequence with constant surface connectivity
(e.g. captured by the methods described in part III), our algorithm first extracts a
plausible kinematic bone hierarchy that closely resembles a skeleton hand-crafted
by an animator, Sect. 14.2. Thereafter, our algorithm automatically infers joint
motion parameters, Sect. 14.3 and Sect. 14.4, and estimates appropriate surface
skinning weights to attach the skeleton to the surface, Sect. 14.5. The output of

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 133–148.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b)

(c) (d)

Fig. 14.1 Overview: (a) Input animation, (b) color-coded distribution of blending weights,
and (c,d) two poses of the input re-generated based on our skeleton-based version. Reprinted
from [2] c© Wiley-Blackwell.

our algorithm is a fully-rigged skeletal version of the original surface-based input.
We exemplify the performance of our algorithm by applying it to a variety of hand-
crafted and captured sequences, and also prove the faithfulness of the reconstructed
skeletal representations to the ground truth input in Sect. 14.6.

In summary, the main contributions of this chapter is an algorithm [2] that

• enables fully-automatic extraction of skeleton structure, skeletal motion param-
eters and surface skinning weights from arbitrary deforming mesh sequences,
and

• thereby enables easy post-processing and fast rendering of mesh animations with
standard skeleton-based tools without having to modify them.

As opposed to related methods, Sect 13.1, our approach jointly produces a com-
pact and easily modifiable skeletal version (Fig. 14.1), enables fast and accurate
rendering of the original input, enables easy generation of new pose sequences for
the input subject, and achieves all this without requiring any modification to already
existing animation tools.

14.1 Overview

An overview of our approach is shown in Fig. 14.2. The input to our algorithm is an
animated mesh sequence comprising of N frames. We represent an animated mesh
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SKELETON
SKINNING

WEIGHTS
SKELETON-BASED

ANIMATION

MESH

ANIMATION

SEGMENTATION

Fig. 14.2 Overview of our algorithm: using an animated mesh as input, our approach seg-
ments the model into plausible approximately rigid surface patches, estimates the kine-
matic skeleton and its motion parameters, and calculates the skinning weights connecting
the skeleton to the mesh. The output is a skeleton-based version of the input mesh animation.
Reprinted from [2] c© Wiley-Blackwell.

sequence by a mesh model Mtri = (Vtri,Ttri) and position data pt(v j) = (x j,y j,z j)t

for each vertex v j ∈ Vtri at all time steps t.
In the first step of our algorithm, we employ spectral clustering to group seed

vertices on the mesh into approximately rigid segments. By using the clustered seed
vertices we are able to segment the moving mesh into kinematically meaningful
approximately rigid patches, Sect. 14.2. Thereafter, adjacent body parts are deter-
mined and the topology of the kinematic structure of the mesh is found, Sect. 14.3.
Using the estimated topology, joint positions between interconnecting segments are
calculated over time. In order to eliminate temporal bone length variations due to
per-time step fitting inaccuracies, joint positions are updated at all time steps and an
inverse kinematics approach is applied to determine the subject’s joint parameters
over time, Sect. 14.4. In a last step, we calculate appropriate skinning weights to at-
tach the learned skeleton to the surface, Sect. 14.5. This way, we produce a complete
skeleton-based new version of the original input.

14.2 Motion-Driven Segmentation

The first step of our algorithm segments the animated input mesh (given by Mtri

and Pt ) into spatially coherent patches that undergo approximately the same rigid
transformations over time. We initialize our approach by selecting a subset of l ver-
tices that are distributed evenly over the mesh, Fig. 14.3(left). For the selection of
the seeds we only consider a reference pose Ptr (typically tr = 0), and employ a
curvature-based segmentation method [21] to decompose the model into l surface
patches. The seed vertices are chosen as the vertices closest to the centers of the
patches. We typically choose l to be in the range of 0.3 − 1.0% of the total ver-
tex count of the model, which enables reasonably fast decomposition of even large
meshes.

Similar to [12, 1] in the context of optical motion capture, the motion trajectories
of the seed vertices throughout the whole sequence form the input to a spectral clus-
tering approach [16] which automatically groups the l seeds into k approximately
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Fig. 14.3 (left) Subset of vertices distributed evenly over the mesh and (right) resulting ap-
proximately rigid surface patches. Reprinted from [2] c© Wiley-Blackwell.

rigidly moving groups. We capitalize on the invariant that mutual distances between
points on the same rigid part should only exhibit a small variance while the mesh is
moving. After clustering the vertices with similar motion, we transform them into
rigidly moving coherent triangle patches.

In order to use spectral clustering, we first construct a spatial affinity matrix A.
We developed an affinity criterion specifically for our setting that defines the entries
of A as follows:

Ai, j = e
− σi, j+

√ρi, j

S2 , (14.1)

where ρi, j = 1
N2 ∑t δ (vi,v j,t) is the mutual Euclidean distance δi, j,t between seed

vertex vi and seed vertex v j over time and σi, j is its standard deviation. S =
1

N2 ∑i, j (σi, j +
√ρi, j) is a scaling term controlling the convergence behavior. We

construct the entries of A such that the affinity values of vertex pairs with large
average mutual distance is reduced, which forces our spectral clustering algorithm
to put spatially far apart groups of vertices with similar motion into separate clusters.

Spectral clustering is our method of choice as it can robustly infer complex clus-
ter topologies as they are typical for our motion segmentation problem. Instead of
grouping the vertices directly based on the individual values Ai, j, spectral cluster-
ing proceeds by rearranging the l input samples in k well-separated clusters on the
surface of a k-dimensional hypersphere. It achieves this by building a diagonal ma-
trix D whose (i, i)-element is the sum of A’s i-th row. Now the Laplacian matrix
L = D−1/2A D−1/2 is built, its k largest eigenvalues e1, . . . ,ek are computed and
stacked into columns to form the matrix X ∈ R

l×k. The rows of X are normalized
and considered as points in R

k. Then the l row vectors are split into k clusters using
standard k-means clustering. Every original sample vertex vi is assigned to a cluster
j if and only if row i of X was assigned to cluster j. We remind that k-means cluster-
ing is effective here because in the transformed data X clusters are well-separated.

Spectral clustering makes the clustering more robust against outliers and leads to
a more robust and kinematically more meaningful segmentation than, for instance,
standard k-means [7]. As an additional benefit, the optimal number of clusters k can
be automatically calculated based on the data set’s eigen-gap. In our system, we
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Fig. 14.4 While with k = 13 patches (left) merely the larger rigid segments are identified, but
the feet are merged with the lower legs, at k = 31 (right) the full kinematic detail has been
discovered. Reprinted from [15] c© Eurographics Association.

automatically cluster the seeds into k groups such that around 99.0% of the total
variation of the data is explained. However, for some applications, as the system in
Chapter 15, the automatic optimal segmentation is not always the best one. In this
case, spectral clustering also allows the specification of a number of rigid surface
patches to be used to segment the model. Fig. 14.4 shows the segmentation of the
camel’s mesh for two different values of k. At a smaller k-value, the lower legs and
the hoofs form one cluster since the relative motion between these two was less
significant than the relative motion between other segments. For a larger k-value,
they have been split in two, which shows that with increasing level k of detail, our
segmentation intuitively produces plausible and more detailed segmentations.

Using the k optimal vertex clusters, we create triangle clusters T0 . . .Tk−1 = Ttri

by assigning each triangle Δ = (w0,w1,w2) ∈ Ttri to the closest seed vertex class
considering the average Euclidean distance from a seed vertex vu to w0, w1, and w2.
The resulting clusters divide the mesh into k approximately rigid surface patches,
Fig 14.3(right). Note that although a structurally motivated distance measure like the
geodesic distance could also be used for clustering the triangles and to determine
affinities in Eq. 14.1, our experiments show that similar results can be achieved
using simple Euclidean distance which reduces the algorithm’s computation time
considerably. As seen in Sect. 14.6, our segmentation approach is able to create
triangle patches that divide the mesh into plausible approximately rigid body parts.

14.3 Automatic Skeleton Extraction

Given the list of body segments, their associated seed vertices and triangle patches,
we extract the kinematic skeleton structure of the animated mesh by first finding
its kinematic topology (i.e. find which body parts are adjacent) and, thereafter, by
estimating the positions of the interconnecting joints for the whole sequence.

To determine which body segments are adjacent, we analyze the triangles at the
boundaries of the triangle patches. Body parts A and B are adjacent if they have
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mutually adjacent triangles in their respective patch boundaries. Unfortunately, in
practice a patch may be adjacent to more than one other patch. If more than two
patches are directly connected (e.g. head, torso and arm), we need to decide which
segments are truly kinematically connected and which are not. Here we take a
heuristic approach and consider only those patches to be adjacent that share the
longest common boundary (in terms of the number of adjacent boundary triangles).
For instance, if head, arm and torso are connected, we calculate the number of neigh-
boring triangles for all combinations of patch pairings (e.g. head-torso, head-arm
and torso-arm) and do not assign the pair head-arm as an adjacent segment since it
has less neighbors in comparison with the other two options. For any adjacent pair
of patches, a joint has to be found later. Note that in our system we assume that the
body part in the center of gravity of the mesh at the reference time step is the root
of the hierarchy.

In order to estimate the joint positions between two adjacent body segments A
and B quickly, we only consider the information from the sets of seed vertices VA

and VB located on these segments, and not the information from all vertices of Mtri.
Instead of solving for the complete sequence of joint positions, we significantly
reduce the problem’s complexity by first aligning the segment poses to a reference
time step tr (usually tr = 0), then solving for a single optimal joint position at ctr in
the reference pose, and finally retransforming ctr into the original poses of A and B.

To serve this purpose, for each time step t, we first compute two rigid body trans-
forms TAt→tr and TBt→tr that align the positions of the seed vertices in both sets with
the positions of the seed vertices VA at the reference time step [8].

For finding ctr, we follow an idea proposed in [12] and assume that a good es-
timate for the correct sequence of joint positions is the sequence of locations that
minimizes the variance in joint-to-vertex distance for all seed vertices of the adja-
cent parts at all frames. Using this assumption, [1] solves for the joint location at
the reference time ctr by using a distance penalty based on the average Euclidean
distance to regularize the solution. Alternatively, we use the regularization term pro-
posed by [4], which makes the estimated joint position come closer to the centroid
position bt of the boundary curve between the two adjacent body parts at all time
steps t. Therefore, we solve for ctr by minimizing:

J(ctr) =
1
2

∗ ∑
va∈VA

σa(ctr)+
1
2

∗ ∑
vb∈VB

σb(ctr)+ α ∗ d(ctr,btr), (14.2)

where σa(ctr) and σb(ctr) corresponds to the Euclidean distance variance over time
between the joint position ctr and the vertex va and between ctr and vb, respectively.
d(ctr,btr) is the Euclidean distance between ctr and btr at the reference time step.
The coefficient α is used to regularize the solution, making the joint position be
located as closed as possible to the interior of the mesh. The results in Sect. 14.6
were generated using a value of α = 0.05 (which we found to be satisfactory in our
experiments).

After solving Eq. 14.2 and finding the optimal joint location ctr, the joint posi-
tions at all other frames can be easily computed by ct = T−1

At→tr
∗ ctr. By applying the
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above procedure to all adjacent body parts, we reconstruct all joint positions for the
whole sequence (see Fig. 14.5).

14.4 Motion Parameters Estimation

A consistent parameterization of the skeletal motion in terms of rotational joint pa-
rameters is only feasible in case the skeleton structure preserves constant dimensions
over time. However, due to possible errors generated by aligning the body parts in
the reference frame (mostly caused by subtle (non-rigid) relative motion between
vertices on the same segment), the lengths of the bones in the skeleton may slightly
vary over time. We enforce the bone lengths to be constant by stepping through
the hierarchy of the estimated skeleton from the root down to the leaves and cor-
recting the joint positions for each pair of subsequent joints in the kinematic chain
separately such that the bone length constraint is satisfied.

Let ci
t be the position of a joint i and ci−1

t the position of its parent joint at time t.
We are able to calculate the optimal value for the length of the bone connecting joint
i−1 and i, li−1,i, over time and the new positions for the joints i, nci

t , by minimizing
the following energy:

S(nci,li−1,i) =
N

∑
t=0

‖ci
t − nci

t‖2 +(‖nci
t − ci−1

t ‖− li−1,i)2 . (14.3)

The first term in Eq. 14.3 keeps the new joint position nci
t as close as possible to the

old position, while the second term constrains the bone length to be the same in all
frames.

After solving this equation for each pair of subsequent joints in the hierarchy,
we obtain a consistent kinematic structure of the mesh Mtri. To infer joint motion
parameters, i.e. a rotational transformation Ri

t for all joints i at all times t, we first
specify the skeletal pose at the first time step as reference pose (this is the best
we can do given no explicit reference). Thereafter, we apply a Cyclic-Coordinate-
Descent (CCD) like algorithm [14, 5] to infer all Ri

t relative to the reference using
Euler angle parameterization. To this end, we optimize one joint variable at a time by
calculating the positional error with respect to the estimated joint positions found
for that time step. Since we have all in-between joint positions of each kinematic
sub-chain, our method converges quickly and reliably. Finally, the translation of the
root is stored as additional parameter for each frame.

14.5 Skinning Weight Computation

Skinning is the process of attaching the skeleton to the surface in such a way that
changes in skeletal pose lead to plausible surface deformations. Although more
advanced deformation schemes exist (see Sect. 13.1), we decided to use the stan-
dard linear blend skinning method [13], also called skeletal subspace deformation
method - SSD, since it is widely supported in games and animation packages.
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Fig. 14.5 (top) Visual comparison between the reconstructed joint positions and the true posi-
tions (shown as white spheres) at four different frames. (bottom) Plot of the low difference in
z-coordinate between the reconstructed left elbow joint position and the ground truth position
over time (biped walking sequence). Reprinted from [2] c© Wiley-Blackwell.

Let p0(vi) be the position of the vertex vi of Mtri in the reference pose (or rest
pose), let Rb

t be the transformation of the bone b from the reference to time t, and
let wb(vi) be the weight of the bone b for the vertex vi. Note that the bone transfor-
mation Rb

t equals the transformation R j
t of the preceding joint j from the hierarchy.

SSD expresses the new position of vertex vi at time t as pt(vi) = ∑b wb
i Rb

t p0(vi).
Therefore, in order to use the SSD method to re-animate the sequences using a
more compact representation, we need to determine the bone weights wb

i for each
vertex vi, i.e. we need to know how much each bone influences each vertex.

We employ the method proposed in [6] to determine the skinning weight dis-
tribution for each bone. This method computes the distribution based on the re-
sults of a heat diffusion process rather than based on simple vertex proximity to
the bone, which makes the estimation process more robust. In contrast to their
work, however, we consider the entire sequence of mesh and skeleton poses from
the input when finding optimal weights. In particular, we first solve for the weight
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distributions wb
f of each frame f separately, and thereafter average them to obtain

the final distributions wb.
When computing the weight distribution wb

f we regard the volume of the model
Mtri as an insulated heat-conducting body and force the temperature of the bone b
to be 1 and the temperature of all others to be 0. The weight wb

f (vi) equals the equi-
librium temperature at vi. For computational simplicity, the equilibrium equation is

only solved on the mesh’s surface yielding
∂wb

f
∂ t = Δwb

f + Hf (pb
f − wb

f ) = 0. In our
discrete case this can be reformulated as

(−Δ f + Hf )wb
f = Hf pb

f . (14.4)

In this equation, Δ f is the discrete Laplacian operator at frame f (see Sect 3), pb
f

is a vector where pb
f (vi) equals 1 in case b is the nearest bone to vertex vi and 0

otherwise. Hf is a diagonal matrix with entries Hii = 1/dist(vi)2 representing the
heat contribution weight of the nearest bone to vertex vi at frame f . Here, dist(vi) is
the Euclidean distance between vertex vi and the nearest bone in case it is contained
in the model’s volume and 0 otherwise. The final weight distributions wb for each
bone is the average of the weights wb

f for all frames.
The heat diffusion solution provides smooth and realistic blending weight distri-

butions since it respects geodesic surface proximity during weight assignment rather
than error-prone Euclidean proximity [6]. Furthermore, our experiments show that
by computing the optimal weights from all available poses, our resulting skeletal
animation reproduces the entire original mesh animation more faithfully, Sect. 14.6.

14.6 Results and Discussion

To demonstrate and validate our algorithm, we applied it to a set of mesh ani-
mations generated in a variety of different ways, see Table 14.1 for a list. Some
synthetic sequences, such as the horse sequence (Fig. 14.1), were generated with
a mesh deformation method [17]. Other synthetic sequences like the bird and the
walking biped were originally created with a skeleton-based method which conve-
niently gives us ground truth data. We also have captured performances of humans
at our disposition. The dancing and capoeira sequences, Fig. 14.7 and Fig. 14.9,
were reconstructed by the performance capture approach described in Chapter 11.
The cartwheel and posing sequences (Fig. 14.9) were obtained by using raw motion
capture marker trajectories as constraints in our mesh-based animation framework
described in Chapter 7.

Fig. 14.9 shows one original input mesh, the color-coded skinning weight distri-
butions, and some poses of the original animation re-rendered using our skeleton-
based reparametrization. A visual comparison between our result and the input,
Fig. 14.7, shows that our result is visually almost indistinguishable from the orig-
inal mesh animation and exhibits very natural surface deformations. Furthermore,
visual inspection already suggests that the estimated kinematic structures are nicely
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Fig. 14.6 Visual comparison between pre-defined skeleton embedded to the mesh (left sub-
images) and the skeleton extracted by our approach (right sub-images). Despite slight differ-
ences in the torso area, our estimated skeleton closely resembles the fitted template. Reprinted
from [2] c© Wiley-Blackwell.

embedded into the subjects at all frames and possess biologically plausible dimen-
sions and hierarchies. Here, we would like to note again that all these results were
obtained fully-automatically. Our new representation is very compact. For the horse
animation, for instance, we only need to store geometry and skinning weights once,
and for each time step only store 60 motion parameters (3-DOF per joint) rather
than approximately 25000 coordinate values.

To get a quantitative impression of the faithfulness and quality of our results, we
analyze individual aspects of our method more closely.

Skeleton Reconstruction

Since for most synthetic data we know the true sequence of joint positions, we are
able to provide a quantitative estimate of the accuracy of our skeleton extraction
and motion capture approach. Fig. 14.5(top) shows a visual comparison between
the joint positions estimated by our approach and the true joint positions, shown as
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Fig. 14.7 (top-middle) Two pairs of images comparing the input (left sub-images) to our
skeleton-based result (right sub-images). In either case the renderings are visually al-
most indistinguishable. (bottom) Plot showing the low average Euclidean distance error
between input and reconstructed vertex positions for the human-sized model. Reprinted
from [2] c© Wiley-Blackwell.

white spheres, for the walking biped sequence. Fig. 14.5(bottom) illustrates the ac-
curacy of the reconstructed motion parameters over time. The plot shows a compar-
ison between the z-coordinate of the true and estimated positions of the left elbow
joint for the same walking sequence. The difference between true and estimated joint
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Fig. 14.8 New poses for the input mesh can be easily generated by simply changing the joint
parameters of the extracted skeleton. Reprinted from [2] c© Wiley-Blackwell.

positions is very small and consistent over time, which illustrates the robustness of
our method. Similar low errors could be observed in all our sequences with available
ground truth. The column JACC in Table 14.1 shows the average Euclidean distance
error between estimated joint position and true joint position for all joints over time.
Due to the lack of absolute coordinates, the error is given in percent of the longest
bounding box dimension of the model. In all our examples, major misalignments
between the original and the reconstructed skeleton could only be found if the part
of the input corresponding to that joint was not prominently articulated.

Our automatically computed bone hierarchies closely match the skeletons that
would typically be created by animators. This is demonstrated in Fig. 14.6, where
we show a side-by-side comparison between our result and the skeleton fitted by
the method of Baran et al. [6]. Although the topology of the root/spine area slightly
differs, our calculated skeleton closely resembles the a priori fitted template.

Accuracy of reparameterized animation

Fig. 14.7(top) shows a comparison between two frames of the input dancing se-
quence (left sub-images) and the generated skeleton-based animation (right sub-
images). Visually, almost no difference can be seen. Fig. 14.7(bottom) plots the
consistently low average difference between the vertex positions of the input and
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Table 14.1 Given an animated mesh sequence with T triangles (Δ ) and N frames (FR), the
processing times for segmenting the mesh into triangle patches (SEGM), to extract its kine-
matic structure and reconstruct its motion parameters (SKEL), and to calculate the skinning
weights based on the input data (SKIN) are shown. Also, the low average difference between
estimated joint positions and true joint locations (JACC) - in percent of the maximal side
length of the overall bounding box - and the average difference between original and recon-
structed vertex positions (ACCU) are indicated. Reprinted from [2] c© Wiley-Blackwell.

SEQUENCE FR Δ SEGM SKEL SKIN JACC ACCU
Horse 47 17K 4s 17s 7s/frame N/A 0.56%
Bird 60 55K 5s 49s 10s/frame 2.9% 0.42%

Biped 80 32K 5s 36s 14s/frame 1.7% 0.52%
Cartwheel 120 7K 4s 63s 3s/frame N/A 0.81%

Posing 280 7K 9s 261s 4s/frame N/A 0.43%
Capoeira 150 106K 44s 244s 28s/frame N/A 0.47%
Dancing 220 106K 37s 312s 28s/frame N/A 0.37%

the reparameterized output over time for the dancing sequence. For the human-sized
figure, the error is mostly below one centimeter which shows the high reconstruc-
tion quality also quantitatively. Column ACCU of Table 14.1 shows that similarly
low errors are observed in the other test sequences.

Pose and animation editing

Using our system, we are able not only to recreate the original input based on a
more compact representation, but can straightforwardly produce novel postures of
the input mesh, Fig. 14.8. To this end, we only need to modify the joint parame-
ters which can easily be done in any standard animation package. Since we have
a complete set of motion parameters for the input, we can also easily modify as-
pects of the original animation by altering the joint parameter curves of selected
joints.

Computation time

Table 14.1 lists the run times of each processing step in our algorithm. The sec-
ond and third columns show the number of frames in each sequence (FR) and the
number of triangles in each model (Δ ). The column SEGM lists the time needed
for clustering and mesh segmentation. Column SKEL lists the time needed to build
the skeleton and estimate all motion parameters, and column SKIN lists the time
needed to find the blending weights. With the exception of SKIN which shows per-
frame times, all times given are for processing entire sequences. All run times were
measured on an unoptimized single-threaded code running at a Laptop featuring an
Intel Core Duo CPU with 1.7 GHz.
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Fig. 14.9 Results obtained with different captured performances (top to bottom in each col-
umn): One frame of the input sequence, color-coded blending weight distribution, and two
poses of the input recreated with our skeleton-based representation. Our method efficiently
and fully-automatically converts mesh animations, created by animators or captured from
moving subjects, into skeleton-based animations. Reprinted from [2] c© Wiley-Blackwell.

Discussion

Our approach is subject to a few limitations. During skeleton extraction, it is im-
possible to locate a joint if there is no relative motion between adjacent body parts.
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Therefore, in some of our sequences hands and feet are missed due to insignificant
relative motion. However, we consider this to be a principal problem of any data-
driven skeleton extraction method, and user interaction is feasible in this case.

Most remaining reconstruction inaccuracies are due to non-rigid deformation
components in the input that are not well explainable by a rigid skeleton and lin-
ear skinning weights. However, alternative skinning methods can be applied to
even further reduce the residual errors, e.g. [15, 10, 3, 19]. Furthermore, skele-
tal reparametrization works very well for subjects whose motion is largely due to
a skeleton such as humans and most animals. In largely non-rigidly moving ani-
mations, such as a deforming piece of cloth, our algorithm would still determine
a skeleton, but it is not physically plausible. Therefore, mesh-based editing ap-
proaches might be preferred in this case [11, 20].

Despite these limitations, in this chapter we have presented a fully-automatic
method to extract a kinematic skeleton, joint motion parameters, and surface skin-
ning weights from arbitrary mesh animations. The result is a compact representation
of the original input that can be easily rendered and modified in standard skeleton-
based animation tools without having to modify them. This way, we are able to pre-
serve the great modeling flexibility of purely mesh-based approaches while making
the resulting skeleton-less animations straightforwardly available to the animator’s
repertoire of processing tools.

Our results show that the efficient combination of skeleton learning and
temporally-coherent blending weight computation enables us to effectively bridge
the gap between the mesh-based and the skeleton-based animation paradigms.
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Chapter 15
Designing Non-photorealistic Animation
Collages

In this chapter, we present a method to automatically transform mesh
animations into animation collages, i.e. a new non-photorealistic
rendering style for animations. By automatically decomposing
input animations and fitting a shape from the database into each
segment, our algorithm creates a new rendering style. It has many
applications in arts, non-photorealistic rendering, and animated
movie productions.

An animation collage is a complete reassembly of the original animation in a new
abstract visual style that imitates the spatio-temporal shape and deformation of the
input. Many researchers in computer graphics have been inspired by the idea to de-
velop algorithms that enable the computer and even unexperienced users to repro-
duce the look of certain styles of visual arts, such as collages. Kim et al. [10] develop
a system that can automatically turn arbitrary photographs into collage mosaics that
comprise of an arrangement of elementary image tiles. Rother et al. [14] automat-
ically arrange and blend photographs from a database into a perceptually pleasing
way. Gal et al. [5] show results of a method to approximate static 3D shapes with
other meshes, but they do not handle the general case of mesh animations.

In contrast, this chapter presents a method allowing a computer artist to automat-
ically convert his/her favorite mesh animation into a moving assembly of 3D shape
primitives in a database. This so-called animation collage is glued together in such a
way that it approximates the sequence of shapes from the original mesh animation,
while deforming in the same spatio-temporally consistent way as the original. While
our method can fully-automatically build moving collages, it also purposefully gives
the artist the possibility to post-process and fine-tune the results according to his/her
imagination.

An overview of our system is presented in Sect. 15.1. It first automatically de-
composes the input mesh animation into moving approximately rigid volume seg-
ments, henceforth called animation cells, Sect. 15.2 and Sect. 15.3. This decom-
position is learned from the moving input meshes by means of a spectral clustering
approach, Sect 14.2. Thereafter, it employs a spatio-temporal matching criterion that

E. de Aguiar: Animation & Performance Capture Using Digi. Models, COSMOS 5, pp. 149–162.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



150 15 Designing Non-photorealistic Animation Collages

analyzes the motion and deformation of each animation cell and finds a shape prim-
itive in the database that best approximates its time-varying geometry, Sect. 15.4.
Shape primitives and cells are spatio-temporally aligned, and the fitted shapes are
moved and deformed according to the deformation of the cells, Sect 15.5. Since it is
also our goal to develop new algorithmic recipes for a novel artistic tool, an animator
can influence the final result at all stages of the processing pipeline, Sect 15.6.

The main contribution of this chapter is a system [15] to

• automatically transform mesh animations, which are created directly by anima-
tors or captured using our previous performance capture methods, into animation
collages.

Our software prototype is easy to use and allows even untrained users to cre-
ate very aesthetic collages. Therefore, our system is an interesting add-on to the
graphics artist’s toolbox, with many applications in visual arts, non-photorealistic
rendering, and productions of games and cartoons.

15.1 Overview

As in Chapter 14, the input to our algorithm is an animated mesh sequence com-
prising of N frames, represented by a mesh model Mtri = (Vtri,Ttri) and position
data pt(v j) = (x j,y j,z j)t for each vertex v j ∈ Vtri at all time steps t. The coordinate
sets Pt = {pt(v j)} together with Mtri describe a time-varying surface. The second
input element is a database of K static shapes, each being represented as a textured
triangle mesh.

The first step in our pipeline is the motion-decomposition of the mesh. To this
end, we employ the method described in Sect. 14.2 that analyzes the motion of the
mesh and delivers contingent triangle patches representing approximately rigid ele-
ments, as shown in Fig. 15.1(a). To enable the fitting of shape primitives, we trans-
form the rigid surface elements into approximately rigid volume cells, so-called
animation cells. To this end, a sequence of medial axis meshes is computed from
the animation which, in conjunction with the previously identified rigid surface seg-
ments, is used to create these closed volume cells, Sect. 15.3 and Figs. 15.1(b),(c).
Once the animation cells have been identified, we automatically fit to each of them a
shape primitive from the database, Sect. 15.4. The final moving collages are gener-
ated by deforming the fitted shapes according to the transformation of their respec-
tive animation cells, Fig. 15.1(d). To achieve this, we generate spatio-temporally
consistent offset meshes from the animation cells that drive the shape primitives’
deformations, Sect. 15.5.

15.2 Rigid Body Segmentation

The first step in our pipeline segments the input animation given by Mtri and Pt into
spatially coherent triangle patches that undergo approximately the same rigid trans-
formations over time. Our motivation for decomposing the mesh into approximately
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(a) (b)

(c) (d)

Fig. 15.1 Important steps in our pipeline: the mesh is decomposed into rigidly moving surface
patches (a), skeletons are extracted (b), and animation cells assembled (c), here only some
cells are shown. Shapes are spatio-temporally fitted to the cells and deformed over time to
build the animation collage (d). Reprinted from [15] c© Eurographics Association.

rigid patches is that this seems intuitive and plausible to the viewer. Many characters
in cartoons and animation films, for instance the main actors in 20-th century Fox’s
“Robots” [13], were rendered in this particular style.

The deformations of general mesh animations can not be described by rigid trans-
formations alone. Animators often purposefully combine rigid transformations with
non-rigid ones in order to create a lifelike look. In contrast to motion segmentation
approaches that generate merely a statistically plausible segmentation, we intend to
isolate the underlying rigid deformations from the non-rigid ones in a kinematically
plausible way. By this, we mean that in case there exists a true kinematic segment
hierarchy, our method approximates it as good as possible. For us, it is also impor-
tant that regions on the surface are spatially connected. Only if this is assured, a
faithful decomposition into volume cells becomes feasible, Sect. 15.3.

We apply the motion-driven segmentation method described in Sect. 14.2 to di-
vide the input animation into rigidly moving coherent triangle patches as shown in
Fig. 14.4. The approach is initialized by first selecting l sample vertices distributed
evenly on the model. The motion trajectories of these vertices throughout the whole
animation form the input to our spectral clustering approach which groups them
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into k approximately rigidly moving groups. From this, we associate triangle clus-
ters T0 . . .Tk−1 = Ttri by assigning each triangle Δ = (w0,w1,w2) ∈ Ttri to the marker
vertex v j whose average distance to w0, w1, and w2 is minimal. The resulting clusters
divide the mesh in k segments.

As mentioned in Sect. 14.2, our method is able to automatic infer the optimal
number of clusters from the dataset’s eigen-gap. However, the optimal number of
segments is not always the one favored by an artist. Therefore, we also allow the
user to specify the number of rigid surface patches k and perform the segmentation
accordingly. Fig. 14.4 shows two segmentations for the camel’s model. Using a
smaller k-value, the lower legs and the hoofs form one cluster. For a larger k-value,
they are split in two, showing that with increasing level k of detail, our method
produces plausible and more detailed segmentations.

15.3 Building Animation Cells

Approximately rigid surface patches are not the appropriate shape representation for
building animation collages. Although each patch is the outer boundary of a volu-
metric subsegment that moves approximately rigidly, it does not describe the spatial
extent of this subsegment in the interior of the original mesh. To approximate these
volumetric subsegments, we extend each surface patch into a so-called animation
cell, i.e. a closed watertight triangle mesh that bounds an approximately rigidly
moving slice of the original mesh’s volume, Fig. 15.1(c). This volumetric decompo-
sition of input animations has a couple of advantages. First, volumetric animation
cells define 3D placeholders to which approximating shapes are to be fitted in order
to generate visually pleasing collages with decent shape and deformation approxi-
mation. Thus, volumetric decomposition is a clever way to break down the fitting
problem for the whole mesh into a set of fitting problems for individual cells. Fur-
thermore, by deforming approximating shapes like their encompassing rigid cells,
the deformation of the shapes remains in visually pleasing bounds.

The input for building animation cells is the set of rigid surface patches
T0, . . . ,Tk−1 that was computed in the previous section. It is our goal to extend each
surface patch into a closed and watertight animation cell mesh. Looking only at the
graph structure of each patch, this is easily achieved by inserting a new vertex for ev-
ery boundary loop, triangulating the arising fan, and thereby removing the boundary
loop. Although the principal idea is fairly easy, a proper way to insert the additional
vertex for the boundary loop is crucial.

We firstly compute a sequence of medial axis meshes S0, . . . ,SN−1 from the in-
put animation, Fig. 15.1(b). The number of vertices and the connectivity of each Si

matches the properties of the respective M i
tri that it was computed from: for com-

puting the skeletal mesh Si, we employ the Voronoi-based two-sided approximation
of the medial axis that has originally been proposed in [7]. Every vertex of M i

tri is
associated with a Voronoi cell. One-to-one correspondences between the vertices of
M i

tri and the vertices of Si are established by using the Voronoi poles as skeletal
mesh vertices [1]. The connectivity of Si is copied from M i

tri. In order to remove
undesired spikes in the skeletal mesh, we employ tangential Laplacian smoothing.
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Fig. 15.2 An animation cell for the center segment of the horse (left), the strawberry fitted
to it (middle), and the offset cell for the center segment (right), all shown for the same time
step. Reprinted from [15] c© Eurographics Association.

As the skeletons share the graph structure of the animation meshes, they can be
partitioned into the same patches. In the following, we describe how to build anima-
tion cells for all patches at a single time step t. By applying the same procedure to all
time steps, we generate the appropriately deformed versions of each cell. Consider
a patch Tk and its associated vertex positions taken from Pt . For all boundary loops
of Tk at a time step t, we compute the center of gravity of associated vertex posi-
tions in the skeleton St . The new vertex for fan-triangulation of the boundary loop
is positioned at this center. Fig. 15.2 (left) illustrates this using a center segment of
the horse animation as an example.

Note that a simple strategy like choosing the center of gravity of the boundary
loop’s vertices for fan-triangulation would not have fulfilled our requirements. Our
experiments showed that, in this case, very flat animation cells may occur for ex-
treme geometric configurations which would lead to inappropriate volumes for the
subsequent steps of our method. Depending on the geometric setting, similar prob-
lems may occur if one tries to directly triangulate a hole without inserting a vertex.
Although our cell decomposition does not strictly partition the volume, it generates
volume slices that are tailored to our purpose.

15.4 Assembling the Collage

As already outlined in the previous section, the sequence of moving animation cells
can be regarded as a sequence of volumetric placeholders to which approximating
shapes from the database are fitted. While, by this means, it may not be possible to
exactly reproduce the true shape of each cell, in particular its outer surface, the over-
all appearance of the mesh animation is still faithfully approximated. The decom-
position of the animation into cells also bears many further algorithmic advantages
since the overall fitting problem simplifies to a fitting problem between individual
shapes and segments. Furthermore, it becomes easier to assure that the shapes to fit
not only match the outlines of their respective animation cells at a single time step.
Since the animation cells undergo mainly rigid deformations, the slight non-rigid
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deformations of the approximate shapes that may be necessary to assure good ap-
proximation over the whole sequence can be kept in reasonable bounds, Sect. 15.5.

To put this into practice, a shape similarity measure is needed (Sect. 15.4.1) that
is applied in our spatio-temporal matching and alignment approach to fit a database
shape to a deforming animation cell, as described in Sect. 15.4.2.

15.4.1 Shape Similarity Measure

Due to the diversity of database shapes, and potential differences in orientation and
uniform scaling, we require a similarity measure that is rotation-, pose- and scale-
independent. Spherical harmonic descriptors fulfill all these requirements and have
proven to be superior to many other global descriptors [9]. Given a mesh K, we
compute its spherical harmonic descriptor as follows: first, the spatial occupancy
function O(x,y,z) is sampled on a regular grid within the mesh’s bounding box
by rasterizing the mesh into a voxel volume of dimension �1 × �2 × �3 [12, 11].
The voxel volume is intersected with q equidistant spheres W0, . . . ,Wq−1 that are
concentrically arranged around the center of gravity of the voxel set. The discretized
occupancy function is resampled on the surface of each spherical shell, yielding q
spherical functions o0(θ ,φ), . . . ,oq−1(θ ,φ). Each of these q spherical functions is
decomposed into its harmonic frequency components as

f�(θ ,φ) =
m=�

∑
m=−�

a�mY m
� (θ ,φ),

where � is the frequency band, a�m is the m-th coefficient on a band �, and Y m
� is the

m-th spherical harmonic basis function for a band � [6]. For each spherical function,
the norms of its frequency components are computed as

SH(oh) = {‖ f0(θ ,φ)‖,‖ f1(θ ,φ)‖, . . . ,‖ f�−1(θ ,φ)‖} .

The complete shape descriptor D(K) is the two-dimensional q × h-array that is
indexed by the sphere radius and the frequency band. For our purpose, we found
that descriptors with h = 20 and � = 10 are sufficient.

The difference d(D1,D2) between two descriptors D1 and D2 is obtained by in-
terpreting each of them as (q ·h)-dimensional vectors and computing the angle that
they span.

15.4.2 Spatio-temporal Shape Fitting

Using the above shape descriptor and the associated distance measure, we find a
shape from the database that best matches the time-varying shape of each anima-
tion cell throughout the whole sequence. To keep processing times and memory
consumption in reasonable bounds while sampling the range of deformations suffi-
ciently densely, we propose the following approach to fit a shape to one animation
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Fig. 15.3 Effect of spatio-temporal fitting for the tail of the camel (left). One frame of the
result animation is shown with a single (center) or three representative time steps (right)
used during spatio-temporal fitting. Reprinted from [15] c© Eurographics Association.

cell Zj: at first, a set of representative time steps 0 ≤ t1, . . . ,tr < N is chosen in which
the whole mesh undergoes a characteristic range of deformations. Let the vertex po-
sitions of Zj at the r time steps be Pt1(Zj), . . . ,Ptr(Zj). For each of the r cell poses,
a descriptor is computed, yielding a set U = {Dt1(Zj), . . . ,Dtr(Zj)}. For each of the
shapes in the database and their associated descriptors Di, a global distance to all
descriptors in U is computed as

dglob(Di,U) = ∑
t∈t1,...,tr

d(Di,Dt(Zj)) for 0 ≤ i < K .

The above distance assesses the spatio-temporal goodness of fit between a
database shape and a cell over time. Accordingly, the index c of the database shape
that matches the shape of Zj at all representative time steps best is found as

c = argmin
i

dglob(Di,U).

Database shape c is fitted to the single pose Ptm(Zj) of Zj out of all the represen-
tative poses which best matches the shape of c, thus

tm = argmin
t∈{t1,...,tr}

dglob(Dc,Pt(Zj)).

By this way, we guarantee that the shape is fitted to the optimally matching con-
figuration of the cell, and thus the required transformation of c during the fitting
itself is minimal. The effect of spatio-temporal fitting is compared to single time
step fitting in Fig. 15.3.

The fitting itself first coarsely registers shape c and Zj in pose Ptm(Zj) by align-
ing their centers of gravities and principal components in orientation and scaling.
Thereafter, the initial fitting is refined by running an ICP-like alignment [2].

Although shape matching and fitting are fully automatic processes, user inter-
action is possible to meet artistic preferences. On the one hand, a user can restrict
matching to a subset of the database or even manually choose a collage shape which
will be fitted into the cell. Additionally, a user can also manually adjust the fitted
shape’s position, scale and orientation.
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Finally, we note that, while there are many applications for partial shape
matching, the use of a global approach is essential to our method, as our goal is
to faithfully fill in the whole cell. This way, self-intersections and artifacts during
the animation are minimized since the cells have a near-rigid structure. Furthermore,
bigger holes in the collage are prevented. Consequently, we decided to fit only one
shape per cell to provide the most plausible results for the animation.

15.5 Animating the 3D Collage

In the final stage of our method, we compute the animation collage from the set of
animation cells and associated collage shapes. Note that each of the collage shapes
has potentially been fitted to a different reference time step tm by the procedure
described in the previous section.

Our approach proceeds again cell-wise; per-frame transformation of the anima-
tion cells is propagated to the fitted shapes. We consider this transformation as a
general deformation of the cell, which is expected to be nearly rigid. Among the
many surface deformation methods which are available in the literature, we chose
free-form deformation based on 3D mean-value coordinates [3, 4, 8], because it
can directly process our input data, produces good results, and is robust and simple
in implementation. Using the standard approach, the triangulation of the animation
cell would serve directly as control mesh for the deformation. The collage shape is
rigidly fitted into the geometry of the animation cell Ptm(Z) at a reference time step
tm, and then mean value coordinates are used to reconstruct shapes which deform
like the geometry of cell Pt(Z) at any other time step 0 ≤ t < N. However, there
are two requirements which render this immediate deformation impractical for our
special animation collage setting: first, we want to provide the user some additional

Fig. 15.4 With larger offset segments, the fruits in the horse’s leg deform more stiffly (right)
than with tighter offsets (left). Reprinted from [15] c© Eurographics Association.
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Fig. 15.5 Our method automatically generates moving 3D collages out of mesh animations
by rebuilding them as moving assemblies of shape primitives. In the example above, the
galloping horse (first column) has been transformed into two galloping sets of fruits (second
and third columns). Reprinted from [15] c© Eurographics Association.

global control over the deformation, and second, we have to ensure numerical ro-
bustness. Both requirements are related, and we apply a two-step deformation ap-
proach with spatio-temporal offsets.

The key idea of our deformation is to use certain morphological offsets of the an-
imation cells as control meshes, i.e. the cells’ geometry is extruded in the direction
of the surface normal (but avoiding self-intersections). By this way, we can control
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Fig. 15.6 Shape database used in our system comprising of 20 shapes, ranging from fruits,
over industrial shapes like screws, to barrels and bottles.

the stiffness of the deformation by taking advantage of the well-known behavior
of the pseudo-harmonic fields induced by mean value coordinates for the new, en-
larged boundary polyhedra, as shown in Fig. 15.4. One such offset cell for the torso
segment of a horse is shown in Fig. 15.2(right)

At the same time, we avoid numerical instabilities resulting from evaluating the
field in the vicinity of the control mesh, a situation which cannot be generally
avoided when using the animation cells’ geometry directly. Our offsets can be easily
constructed in a volumetric representation using level-sets. As accuracy is not cru-
cial here, we use an even simpler approach and compute a discrete voxel model for
each animation cell mesh following [11], which is then dilated and converted back
into a triangle mesh using marching cubes. Here the voxel resolution and dilation
radius define the offset radius. Then, we compute an offset cell for each animation
cell with respect to the reference time step. The computation is efficient and guar-
antees watertightness and no self-intersections. However, we lose control over the
combinatorial structure of the offset mesh, i.e. it does not share the animation cell’s
connectivity, and an alternative mapping to the animation cell need to be provided
by the second deformation step.

The final animation of a single collage shape proceeds as follows. First, the time-
dependent geometry of the animation cell is used as control mesh to compute a
deformed offset cell. Second, the offset cell is used as control mesh and its defor-
mation is propagated to the collage shape. Note that, by volumetric construction,
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the genus of the offset cell might differ from that of the respective animation cell.
However, using the free-form deformation approach influencing the whole volume
of the animation cell, this does not imply any problem. The offset radius provides
an additional parameter to control the effect of the deformation: the more distant the
offset, the stiffer the deformation. Fig. 15.4 shows that the shapes in the horse’s leg
bend more crisply, if the offset segments are tighter. While this parameter has no
physically plausible meaning, we find it intuitive to use.

15.6 Results and Discussion

We have generated a variety of animation collages from mesh sequences of a gal-
loping and a collapsing horse, a galloping camel, as well as two scanned humans
performing a motion captured jump and a cartwheel. For none of the sequences,
ground truth kinematics, e.g. in the form of animation skeletons, are available. Our
shape database comprises of 20 collage shapes, ranging from fruits, over industrial
shapes like screws, to barrels and bottles, Fig. 15.6. A variety of animation col-
lages with different appealing visual styles were created, Fig. 15.8. The collages do
not only have very aesthetic looks at a single time step, but nicely approximate the
spatio-temporal appearance of the input animation, see Fig. 15.5 and, in particular,
the resulting video.

The top row in Fig. 15.8 shows freeze-frames from the front and the back of an
animation collage showing a jumping human. For the original sequence, motion cap-
ture data was used to animate a laser-scan using the method described in Chapter 7.
With both fruits, as well as barrels, bottles, and screws, the 25 computed animation
cells are both faithfully and sometimes funnily approximated. We particularly like
the head being automatically approximated by a strawberry or a pear. Due to our
offset-based deformation, the moving collages maintain the subtle motion details of
the input which lends them a very human-like motion style.

The galloping horse is shown for fine and coarse segmentations with 35 and 17
animation cells in the upper middle row in Fig. 15.8. In comparison, one sees clearly

Fig. 15.7 Although the automatic result generated with our framework looks nice (left), the
user is able to perform small changes at the tail and the leg of the animation collage to match
personal preferences (right).
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Table 15.1 Typical animation data. Shown are time steps N, number of triangles in the mesh
Δ , and number of animation cells k. Furthermore, measured computation times (in seconds)
are given for the four parts of the pipeline: Seg = Rigid patch segmentation; Cell = Animation
cell + offset cell computation for each sequence; Fit = Shape fitting and alignment; Anim =
Animation of the collage. Reprinted from [15] c© Eurographics Association.

Seq. N Δ k Seg Cell Fit Anim
jumping 216 26 312 25 416 401 46 171

gal. horse 48 16 843 35 297 190 64 134
camel 47 43 758 13 914 139 59 131

cartwheel 120 7 318 11 45 188 22 68

the non-rigid transformation for the coarse segmentations, for instance, in the lower
legs where the hoofs are not covered by additional cells. However, even these defor-
mations appear rather natural due to stiffness provided by the offset cells. Of course
the individual impression depends on the viewers particular expectations and pref-
erences, and spending more animation cells usually leads to better approximations
of rigid parts. Moreover, our choice of using a single collage shape per cell is jus-
tified by the fact that the animation looks plausible, and there are few holes and
self-intersections.

The galloping camel is shown for fine (lower middle row) and coarse segmen-
tations (bottom row) with 31 and 13 animation cells in Fig. 15.8, respectively. We
would like to point out the nice approximation of the hunch, e.g. by pears (coarse)
and by bananas (fine). Specially, the arrangement of bananas is non-trivial, and the
impression of a sophisticated design is given. Such arrangements are enabled by the
partition in animation cells, and the example thus nicely confirms our algorithmic
approach to break the fitting problem into cell-wise problems.

The majority of the results in Fig. 15.8 was generated fully-automatically. Only
in some cases, marked with a black dot in the upper right, we changed the position
or the kind of at most two shapes to match personal preferences, Fig. 15.7.

Table 15.1 summarizes information on input animation complexity and run times
measured on a Pentium IV 3.0 GHz. Our approach is very efficient: run times are
dominated by rigid body segmentation (Seg) and cell generation (Cell), both of
which need to be run just once per input sequence. Shape fitting and alignment
(Fit), as well as the animation of the collage (Anim), are performed once for each
collage style created from an input sequence. Even for sequences with more than
200 frames, both steps can be finished in less than four minutes. Run times could
be further sped up by working with decimated input or cell meshes, however, we
always worked on the originals.

Our approach is subject to a couple of limitations. As mentioned in Sect. 14.6,
while our clustering algorithm provides excellent results for the shown input anima-
tions, its output generally depends on these inputs: a meaningful segmentation can
only be expected if there is actual relative motion of all limbs in an animation. We
conclude that this approach works best for animations with kinematic structure. In-
herently, fitting is limited by the shapes available in the database. If no proper shape
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Fig. 15.8 Different visual styles for distinct frames of a jumping human, a galloping
horse, and a galloping camel sequence. Black dots in the upper right mark animations in-
cluding manual changes of position or kind of at most two shape primitives. Reprinted
from [15] c© Eurographics Association.

is available, unnatural deformations may be necessary. As the database also defines
the visual style, we leave this as an artistic problem that has to be considered by the
user. From a more technical point of view, our approach requires that segments span
a volume. The approach is thus not able to fit collage shapes to nearly planar seg-
ments. Note that the spatio-temporal segmentation, which provides the segments, is
not at all affected.

Furthermore, for fitting, we assume that the animation cells are in motion and
hence being transformed. This is different from considering a static fitting problem,
where alternative approaches such as Gal et al. [5] may show better results, and
where it may be advantageous to allow for more shapes per cell.

Despite these limitations, we present a novel approach to fully-automatically gen-
erate animation collages from input mesh animations, providing a compendium of
spatio-temporal matching and segmentation techniques. Our software prototype is
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an interesting add-on to the graphics artist’s toolbox and also allows untrained peo-
ple to produce high-quality results.
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Chapter 16
Conclusions

This book has presented novel algorithms to accurately capture, manipulate and
realistically render real-world human performances, going beyond the limits of re-
lated capture techniques. Each method described in this work can be regarded as a
specific solution to a challenging problem or as a building block that enables the
development of novel applications. The methods outlined in this book have been
originally tailored to deal with human actors. However, the fundamental principles
are also applicable to a larger class of real-world scenes.

In part I of this book, we described how we model a real-world camera, and the
kinematics, shape and appearance of a real-world subject in a computer. We also de-
tailed the differential-based mesh deformation methods, which are used throughout
the book to manipulate and track the input static scanned model. Furthermore, we
presented the technical components of a new acquisition setup that provides high
quality data for the different projects proposed in the book. Our studio allows us to
generate realistic virtual doubles of real-world subjects by providing high-quality
models and multiple video streams of the subject performing. The description of
our studio also serves as a practical guide for people planning to build such facility.

Part II of this book introduced a simple framework to reduce the overhead caused
by the traditional skeleton-based animation pipeline. By abandoning the concept of
a kinematic skeleton, which most commercial softwares rely on, our mesh-based al-
gorithms enable animators, or even untrained users, to quickly and effectively create
realistic animations. The first approach (Chapter 6) and its extension (Chapter 7) in-
tegrate into the traditional animation workflow and simplify the whole procedure by
employing mesh deformation methods to guide the motion generation and the mo-
tion transfer processes. Moreover, our experiments have shown that our new pipeline
is able to simultaneous solve the animation, the surface deformation, and the motion
retargeting problem.

Our proposed approach streamlines the whole pipeline from laser-scanning to
animation from marker-based or marker-less motion capture data, and it is a step
towards simplifying the traditional, not so straightforward acquisition-to-animation
pipeline. As future work, we plan to incorporate a volumetric mesh deformation
method, as the one presented in Sect. 3.3, to guide the motion transfer process. By
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this means, local cross-sectional areas are preserved, which will enable us to handle
extreme deformations properly. We also would like to add intuitive key-framing
capabilities into our framework.

In part III, we have described the evolution of a system to directly capture real-
world performances using a high-quality deformable model and multi-view video
sequences. We demonstrated that by explicitly abandoning any traditional skele-
tal or motion parameterization and by posing performance capture as deformation
capture, acquisition methods with a high level of flexibility and versatility can be
developed. As a result, a spatio-temporally coherent dynamic scene representation
can be produced which can easily be modified by animators.

The first algorithm is described in Chapter 9. By combining an optical flow-
based 3D correspondence estimation technique with a fast Laplacian-based track-
ing scheme, the method is able to accurately and automatically capture both pose
and surface deformation of human actors wearing everyday apparel. The second al-
gorithm is presented in Chapter 10. The purely passive hybrid tracking approach is
able to identify and track the 3D trajectories of features on a moving subject without
requiring any a priori information or optical markers. By combining the trajectories,
a static laser-scanned model and an efficient deformation technique, the human scan
can be animated and follows the same motion as its real-world counterpart.

In Chapter 11, we have presented our more advanced video-based performance
capture system that augments the previously described approaches and overcomes
many of their shortcomings. It produces a novel dense and feature-rich output for-
mat comprising of spatio-temporally coherent high-quality geometry, lifelike mo-
tion data, and surface texture of recorded actors. This is achieved by combining
efficient volume- and surface-based deformation schemes, a multi-view analysis-
through-synthesis procedure, and a multi-view stereo approach. By this means, our
method is able to reconstruct an unprecedented range of real-world scenes at a high
level of detail. It supplements and exceeds the capabilities of optical capturing sys-
tems that are widely used in the industry, and provides animators and CG artists
with a new level of flexibility in acquiring and modifying real-world content.

By being completely passive, our performance capture methods also enable us
to record the subject’s appearance. By combining the input footage with our high-
quality spatio-temporally coherent scene representation, a system to render high-
quality 3D Videos can be created, which enables convincing renditions of the
recorded subject from arbitrary synthetic viewpoints. This combination also opens
the door for attacking new challenging reconstruction problems that were hard due
to the lack of a decent dynamic scene capture technology.

Currently, there is a resolution limit to our capture techniques. Some of the high-
frequency details, such as fine wrinkles in clothing or details of the face, has been
part of the laser-scan in the first place. The deformation on this level of detail is
not actually captured, but it is ”baked in” to the deforming surface. In the future,
we want to investigate ways to capture such complex time-varying details. We also
intend to create tools for higher-level 3D Video editing operations.

In part IV of this book, we proposed novel algorithmic solutions for processing
mesh animations, either generated by animators or acquired by our performance
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captured methods. With our proposed tools, we have made important contributions
to the animator toolbox with a variety of applications in visual arts, movie and game
productions.

The first approach is presented in Chapter 14 and enables the fully-automatic
conversion of a mesh animation into a skeleton-based animation. Our results show
that the efficient combination of skeleton learning and temporally-coherent blending
weight computation enables us to effectively bridge the gap between the mesh-based
and the skeleton-based animation paradigms. This way, we are able to preserve the
great modeling flexibility of purely mesh-based approaches while making the result-
ing skeleton-less animations straightforwardly available to the animator’s repertoire
of processing tools.

The second method is presented in Chapter 15 and converts a mesh animation
into a novel non-photorealistic animation style, the so-called animation collage. Our
system is able to fully-automatically generate animation collages from input mesh
animations, providing a compendium of spatio-temporal matching and segmenta-
tion techniques. Our software prototype is an interesting add-on to the graphics
artist’s toolbox and also allows untrained people to produce high-quality results.

The methods described in this book demonstrate that today it is possible to cre-
ate, manipulate and render authentic virtual doubles of real-world actors perform-
ing. Although most projects are still research prototypes, we are convinced that the
algorithmic solutions described in the book can be integrated in commercial appli-
cations, thus augmenting the power of current animation and capturing tools.
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